Types of Placer Wash Plants

Types of Placer Wash Plants

There are many different types of washplants on the market today. The one thing that they all have in common is that everyone says theirs is the best! We’re not setting out to prove which plant is the best, this article will explore different types of plants and their strengths and weaknesses. Different plants are suitable for different conditions. There is no one size fits all solution.

There are 4 main components to a wash plant: Scrubber, Concentrator, Feed System, and Carrier. While no two wash plants are identical they all involve a combination of these 4 components.

Take a typical trommel plant that you would find in BC or the Yukon for example. You’ll have a hopper that is fed by an excavator, a trommel that feeds a sluice box and it’s mounted on skids.

Wash Plant Components Placer

Scrubbers

The scrubber is the component of a wash plant that separates raw material and prepares it for concentration. The scrubber will remove large rocks and break down chunks of clay and packed sand. Most scrubber systems use water jets to wash the gravel to remove the fine gold that is attached to the cobbles.

The sand and clay that adheres to pebbles and rocks has been shown to have much higher gold content than the gravel as a whole. For that reason, it is important to wash your material well so that gold can be captured in the concentrator.

The scrubber has three main functions:

  • Separate large cobbles and boulders from the feed gravel
  • Wash the cobbles and gravel
  • Break up clods of agglomerated material

The five categories of scrubbers in use today are the Screen Deck, Trommel, Reverse Trommel, Derocker, and Grizzly.

Trommels

Trommels use a rotating drum to agitate the material. Raw gravel is fed at one end and passes over openings in the drum. Rocks that are larger than the openings are disposed of as tailings. The drum is set at a slight angle to allow the tailing rocks to work their way off the end. Trommels do an excellent job of breaking up clay, mud, and compacted gravels.

A trommel is driven by an electric or gasoline-powered motor. The motor spins the drum by either using a long chain with cogs welded around the drum or by wheels that the drum sits on. Most trommels will have a spray bar running inside the drum that sprays high-pressure water on the gravel to aid in removing gold particles from the rocks. The trommel has a lot of moving parts which is one drawback. The more complex a system is, there more potential for failure.

gold trommel yukon

In North America trommels are most often paired with a sluice box that is positioned at a right angle to the drum. A section of openings are positioned above the sluice box with metal screens to allow specific sizes of particles through. Each mine has different requirements for particle sizes depending on the size of gold that exists there. Miner’s typically have openings of 1/2″ or 3/4″, the size of the opening depends on the distribution of gold sizes in the pay gravels.

Trommels can be paired with any type of concentrator, it doesn’t have to be a sluice. Trommels can be any size. They vary from the Gold Cube trommel which is 5” in diameter and 16” long to plants that can run hundreds of yards per hour with diameters of 8 feet or more. Trommels are relatively easy to set up and can handle a wide range of materials. The big advantage that they have over other scrubbers is the ability to break up cemented or compacted material.

Pros Cons
Can handle different kinds of material Mechanically complex, requires maintenance
Can handle high volume Large footprint
Relatively easy setup Burn a lot of fuel
Breaks up clay and compacted gravel Large trommels are difficult to move

Screen Decks

Screen decks use a series of vibrating screens and water jets to wash gravel and separate large rocks. Each deck is mounted on an angle and suspended by springs and caused to vibrate by mechanical means. There can be multiple decks used or just one.

Like a trommel, screen decks are fed at one end and allow oversize material to fall off the other end. There are perforations in between which allow material to fall through to the lower section. The vibration is caused by the rotation of an unbalanced weight called an “exciter”. That is actually the same thing that causes your cell phone or an Xbox controller to vibrate just on a much larger scale. The exciter is driven by a gas or electric motor. Some smaller models such as the Goldfield Prospector drive the exciter by a pelton wheel using water power alone and no motor.

Klondike Wash Plant

A series of high-pressure water jets are used to wash material as it vibrates. Screen decks allow for well-positioned water jets to be put in place for thorough washing of gravels and rocks. There are a variety of screen options varying from woven wire, to punch plates and rubber or plastic perforated material. Screen sizes vary depending on the gold distribution and material being processed, customization of screen sizes is easy to achieve.

Screen decks can accomplish very high production in the right materials. Some of the largest wash plants in the world are using screen decks for that reason. Unlike a trommel, screen decks do not handle clay or compacted material very well. It tends to bounce off the screens and roll off the end. Despite the violent nature of vibrating beds the screen deck is a relatively simple machine and does not require a lot of maintenance. The only part that is mechanically driven is the exciter and there aren’t a lot of moving parts compared to a trommel or a derocker.

Screen decks tend to be quite high off the ground (at least large scale wash plants). They generally require enough of an elevation difference at the site to be able to feed the hopper and allow room for a concentrator below. Some miners use a conveyor system to get around this problem but mobility is not the screen deck’s strong suit. They work best in a stationary position where they will be used for a long period of time.

Goldfield screen deck cariboo

Pros Cons
High volume Struggles with clay and compacted material
Mechanically simple Large footprint
Fuel-efficient Difficult to move
Separation of multiple sizes Slow to set up

Reverse Trommels

There are a few variations of reverse trommels that work a little differently than a basic trommel. A reverse trommel allows heavy material (ie. gold) to exit one end while the large rocks and waste material exit the other. Reverse trommels often have a double tube design with an inner trommel that screens the material while the outer trommel has a screw-like helix that separates the gold.

Reverse Trommel

The trommel is set at the appropriate angle to allow gold to exit one end while water flows over the outer tube. The helix acts in a similar way to a gold wheel, the material of higher density is allowed to work it’s way up the spiral and exit on one end, the less dense material falls out the other.

There are some models with only one opening that kind of resembles a cement mixer. The APT RG-30 for example. They work in a similar way with a helix and a carefully positioned angle and rate of water flow.

Reverse trommels are popular in the mid-sized range from 1 to 10 yard per hour units. There are quite a few on the market. One popular unit is the Mountain Goat Trommel which is a hobby-level clean-up machine. There are large-scale commercial versions and everything in between.

Reverse trommels are interesting machines and work well once they’re set up but they are much more complicated machines than a basic trommel and are finicky to set up. They also require a lot of maintenance. That’s one reason they are mostly on the small-scale side of the industry.

Pros Cons
Can produce very clean concentrate Require a lot of maintenance
Break up clay very well Slow setup
Separation of multiple sizes Complicated machinery, lots of moving parts
Some designs are very compact Not very fuel-efficient

Derockers

Derockers are a neat machine. They use a flexible deck made of long flat slabs with spaces between them. Under the deck is a carriage frame with truck tires that moves back and forth. There is a high-pressure spray system overhead that washes all the material. As the undercarriage moves back and forth it rolls the rocks around on the deck. The water and rolling action work together to wash off the rocks and allow smaller-sized pebbles and material to fall through the openings in the deck slats (usually 2” minus).

yukon derocker plant

Derockers work really well in areas where there are a lot of large rocks and slabs. They are called “de-rockers” after all. They can handle some clay, due to the rolling action they can break it up somewhat. The derocker was invented in the Yukon to deal with gravel deposits that are full of boulders. These machines can easily handle boulders or slabs up to 4 feet in diameter, which would break other types of separation equipment.

Compared to some of the other scrubbers such as screen decks and trommels, the derocker is a complex machine with a lot of moving parts. You have a carriage that takes a beating, the deck has a lot of links to maintain but the derocker frame itself is stationary.

super sluice finger derocker
Super Sluice Derocker in Cariboo, BC

There was a variation of the derocker in the 1980s called the Super Sluice, made by a company called Gold Machines Inc, that used metal fingers instead of the flexible deck. The Super Sluice was very popular for about 10 years in the Cariboo, Klondike and Atlin but over time the complexity of the machine led to frequent breakdowns and they are very few still in use today.

Pros Cons
Handles large boulders and slabs Require a lot of maintenance
Can break up clay and compacted material Complicated machinery, lots of moving parts
Very high production with the right material Require a lot of water and power to run
Quick setup, easy to feed No adjustment for screening options

Grizzly

Some wash plants don’t have a mechanical separation system at all, some use a simple grizzly. A grizzly consists of vertical bars with spacing to allow the size of material you want to pass through. The grizzly is set on an angle such that the larger rocks will roll off and the stuff that fits through the bars will pass through.

Highbankers and small test plants use a grizzly. Production is slow and they often require manual intervention to clear the large material that collects below. Grizzlys are often incorporated into other separation equipment such as screen decks and trommels.

Pros Cons
No moving parts, no breakdowns Slow production
No motors needed No ability to clear tailings
Easy to move, no setup required Screened material is still coarse
Easy to change for different size of gravel

Concentrators

The concentrator is the heart of a washplant. It’s the part of the wash plant that catches the gold and other dense material.

Placer concentrators all use gravity and inertia to separate material based on density. Gold is very dense, it has a density of 19,300 kg/m³. That means that one cubic meter of gold would weigh 19,300 kilograms (19.3 metric tons). In contrast, the typical gangue minerals such as quartz sand have a density of 2,700 kg/m³ and the black sands have a density of about 5,200 kg/m³.

All concentrating methods depend on this principle, except for the use of mercury but that’s not used in large-scale placer mining.

The Sluice Box

In North America, the sluice is the most common concentrator on commercial placer gold wash plants. The sluice box was developed during the California gold rush around in 1849. The first sluices were called Long Toms. Early sluice boxes consisted of long wooden boxes with wooden riffles and moss or burlap to line the bottom. The primitive long toms saved a ton of labour but miners at that time did not have a pre-scrubber and had to pick all the rocks out by hand and pan all the concentrates.

Modern sluices haven’t changed that much from the original design. We use metal now and have scientific studies to analyze the optimal riffle designs and matting but the concept is exactly the same.

Sluices work by creating a vortex behind the riffles. As the gravel/water slurry flows over the riffle it creates an eddy current as it rolls back on the riffle. The eddy causes the water to momentarily lose inertia and it can no longer carry the dense sediment. Dense material is held in the riffle as long as the water is flowing. Once the water stops, the suspended material is released from the riffles, that’s why it’s not good to stop and start a sluice box.

Sluice Riffles gold

There are a variety of riffles in use today but they all work the same way. There have been some excellent studies on different riffle designs and matting.

  • A study of the fine gold recovery of selected sluice box configurations, Jamie Hamilton at UBC: download PDF
  • Placer Gold Recovery Research by Rany Clarkson of New Era Engineering: download PDF

Studies show which riffle designs work the best, what spacing between riffles is optimal and what angle to run at, typically 1.5 to 2.5 inches/foot of sluice run.

There are several different types of riffles in use today. The Hungarian riffle and expanded metal are most common in commercial sluicing operations. Miners in New Zealand developed the hydraulic riffle in the 90’s that allows water to inject under the riffle which keeps them from packing. It’s similar to the way that the Knelson concentrator uses a fluidized bed, more on that later in this article.

Some modern designs have abandoned riffles altogether and use a drop riffle or vortex such as the Devin Sluice or Dream Mat. These vortex systems catch gold in spirals carved into the matting or machined into aluminum sheets. Vortex riffles and matting have the advantage of quick clean-ups but they tend to work better on small-scale operations and clean-up sluices.

Devin Riffle
Devin Vortex Riffles

Different types of matting are used to catch fine gold. Miner’s moss is a typical matting that is made of a synthetic material with lots of loops to catch gold. Miner’s moss is kind of like a thick version of the soft side of velcro or thick carpet. Actual carpet is used in some cases as well. There are lots of high tech rubber designs on the market such as Gold Cube matting, Gold Hog, Dream Mat and many other designs. Some matting is easier to clean up than others but they all catch gold.

Other variations on the sluice include the live bottom and oscillating sluices. The live bottom box works really well. The live bottom box uses a thick rubber sheet on the bottom of the sluice box and has mechanized rollers that sort of massage the rubber moving it up and down. Similar to the rollers in a massage chair. That keeps the material from packing up and keeps the gold at the bottom.

Sluice boxes can handle huge scale production, they can be made very large and multiple sluices can be run together to handle even higher production. The largest wash plants in the world run multiple sluices. All sluices require careful setup and lots of tweaking to make sure they’re catching all the gold. Sluice riffles will eventually become packed with black sand and can no longer catch gold, for this reason, a sluice must be cleaned out regularly.

Large Scale Sluice Plant

Despite the ubiquity of sluices and their simplicity an alarming number of commercial miners are losing fine gold off the end of their sluice. Quality control and testing is essential to make sure that your sluice is operating as it should be. A full-scale sluice can reliably capture gold down to 150 mesh with proper setup.

Sluices have the major disadvantage of slow cleanup times that require a full shutdown. They also lose gold when you start and stop the slurry feed. They are simple and easy to repair in the field though.

Pros Cons
Can handle large volume Proper setup is critical
Simple design, easy to fix in the field Require shut down for cleanup
Modifications and adjustments are easy Large footprint on commercial operations
Require frequent cleanups

Hydrostatic Jigs

Hydrostatic Jigs, often just called “jigs” are very different than a sluice. They use a pulsating water action to separate gold from the lighter gangue materials. Jigs have serval components that work together to separate gold. Typically they have a screen in the upper section which holds a layer of steel balls called “ragging”, usually about 3” thick. Below the screen and ragging is a rubber diaphragm that is moved up and down rapidly by mechanical means producing a vertical pulsing action. The feed material flows over the screen is allowed to settle into the ragging.

Hydrostatic jig diagram gold

The pulsing action in combination with the steel shot allows dense materials to settle to the bottom while lighter material is forced up and carried away by the flow. The action of the jig is based on Stokes Law which determines the rate at which particles fall while suspended in a fluid based on their density. Jigs are usually arranged in a series of cells, each with its own screen and diaphragm. Any number of cells can be used in combination to increase capacity.

The gold is stored in a container in the bottom called a “hutch”. One advantage to this system in commercial operations is that gold nuggets and pickers are not sitting in the open as they would be in a sluice box so it would be difficult for an employee to steal the gold.

Jigs first came into use in placer mining in 1914 in California. They were soon adopted to the large floating dredges that were in use at the time. Jigs had several advantages over sluice boxes. First, they take up much less space, which was important on a floating dredge. Secondly, they can be cleaned out without having to shut down the operation. You simply need to drain out the hutch and you’re back in business.

One of the first jigs used in placer mining was the Pan American Jig wich consisted of two cells. The Pan American model had two 42-inch square cells and could process 20 yards per hour. Multiple units were used in tandem to increase capacity.

Many modern jigs follow the exact same design as the Pan American. Many manufacturers around the world still produce an almost identical machine. There are many variations of jigs today but they allow work on the same principle. Smaller jigs are often used for cleaning concentrates but larger units are also used in full-scale commercial operations.

Pan American Jig
Pan American Jig

Jig Screens

Pros Cons
Clean up without shutting down Initial setup requires lots of tweaking
Small Footprint Rubber diaphragm wears out
Gold stored in safe container Low capacity per cell
Dummy proof once set up Specialised parts required

Centrifugal Concentrator

Centrifugal concentrators are the most efficient method for concentrating placer gold in terms of capturing fine gold and overall revocery. They rely on a rotating drum that resembles a washing machine. The drum spins at high RPM, usually at least 100 RPM, creating a centrifugal force that pushes heavy elements to the outer edge. If you’ve ever ridden the gravitron ride at an amusement park you’ll know firsthand how this works.

In a centrifugal concentrator, the lighter material is allowed to flow over the top of the bowl and is discharged as tailings, the dense material is held in riffles and retrieved during cleanup. The principle is similar to a hydrostatic jig except more G forces are applied. At high G forces centrifuges are less sensitive to particle size than other gravity methods (sluice, jig, etc) and as such can retrieve extremely small gold grains down to 400 mesh.

There are four types of centrifugal processors on the market today: the Knudsen Concentrator, Falcon Concentrator, Knelson Concentrator, and the Gold Kacha.

The Knudsen was the first centrifugal concentrator used in placer mining. It was invented by George Knudsen of California and patented in 1942. The Ainlay bowl was patented in 1928 and saw some experiments in placer mining but didn’t take off. The Knudsen bowl is a 12” to 36” diameter bowl mounted on a vertical drive shaft. The bowl is tapered to allow the slurry to rise up the side while the riffles catch the gold. The Knudsen bowl was used all over the world most notably in California, New Zealand and in Africa. The Neffco Bowl is a modern version and is still used today.

The Knelson Concentrator was developed in Burnaby, BC in 1980. The Knelson is a bit more complex than the Knudsen Bowl and runs at a higher RPM. The Knelson concentrator uses a perforated cone and uses pressurized water that forces in from the outside of the bowl. The cone experiences a force of 60G’s while the water pushes against it, the counteracting force acts to keep the heavy particles fluidized allowing a continual replacement of light grains by heavy ones and avoiding the compaction of riffles like you see in a sluice. The Knelson concentrator is very efficient but like all centrifugal concentrators it requires frequent cleanups.

Falcon concentrators are similar to the Knelson. The main difference is the angle of the walls. Both use the same water pressure system that pushes against the centrifugal force creating a fluidized bed. Falcon (now called Sepro Mineral Processing) is based in Langley, BC, and was founded in 1987. It’s interesting that both Knelson and Falcon were developed in Greater Vancouver. Both companies are world leaders in mineral processing technology.

The Gold Kacha (GK) is a really cool system. I was introduced to this device on a recent placer exploration trip to Sierra Leone, Africa. The Gold Kacha was developed in 2005 in South Africa by Appropriate Process Technologies (APT). It’s similar to the Knudson/Neffco bowl but has several advantages. The Gold Kacha can easily process gold down to 450 mesh (30 microns) and the riffles are designed to prevent gold compaction. The GK can run 3-4 cubic yards per hour.

It’s set up in a turnkey package that’s easy to use. The biggest advantage is that the Gold Kacha retails for $1,500 USD. All the other concentrators on this list are at least 4 times that cost but the GK was designed for use in third world Africa to help artisanal miners avoid using mercury.

Gold Kacha PlacerGold Kacha Wash Plant

All centrifugal gold processing machines work well for catching very fine gold, they catch coarse gold too but the fine gold is the challenging part. Centrifugal processors can catch extremely fine gold very well but they require frequent cleanups, usually every hour or so. Some wash plants use multiple centrifuges and are able to isolate them using valves so that while one centrifuge is being cleaned the others are still operational, I think we’ll see more of these systems in years to come.

Pros Cons
Able to retrieve gold < 400 mesh Frequent cleanups are required
Easy to use, no special knowledge required Very expensive (except Gold Kacha)
Low water consumption Low capacity per unit (compared to sluice)
Low power/fuel consumption Requires thorough pre-screening and clean water

Spiral Concentrators

Spiral concentrators are not commonly seen at placer mines these days. They were popular in the 70s and 80s but have fallen out of fashion. They are very commonly used in the beneficiation of heavy mineral sands, chromite, tantalite, iron ores and fine coal.
spiral concentrator gold
Basically, spiral concentration involves a stack of spirals that are fed from the top using a low-pressure slurry pump. The slurry flows down the spirals like a water slide and separates based on density. At the bottom there are splitters that divert the slurry at different points along the radius of the spiral. The outside of the spiral will have the tailings, since they are less dense the spiral action forces them to the outside, the concentrated gold is on the inner radius and the “middlings” are in the middle. The principle is similar to the way that a shaker or wave table separates gold.

Spirals are often run several times so that the middlings can be run again to increase their level of concentration. There are several variations such as the pinched sluice and the Reichert Cone which uses a series of stacked cones instead of spirals. The spirals are usually made of fiberglass and are lightweight and fairly inexpensive. They are able to reliable capture gold from 6 to 200 mesh, some models can catch down to 300 mesh. Placer spiral systems can handle 4-10 yards per hour but can be scaled up with more units.

gold spiral africa

Pros Cons
Able to retrieve gold < 300 mesh Require consistent, laminar flow
Easy to use, no special knowledge required Low capacity per unit (compared to sluice)
Low cost and cheap to operate Requires thorough pre-screening
Low power/fuel consumption

Dry Washers

Gold is found in areas that don’t have water available, such as the desert regions of California, Nevada, Arizona, and Australia. Placer miners came up with a solution for dry washing.

The process works on the principle of winnowing, which uses wind or air to separate dense material from less dense material. The technique has been used for millennia to separate grains from their husks. Dry washers use a short, waterless sluice and pressurized air in combination with vibration. The sluice portion of a dryswasher has a porous bottom, either canvas or a very fine screen, that allows air to pass through. The whole thing is set on a steep angle so that the material can work its way over the riffles. Air blows up from the bottom and provides some buoyancy for lighter material.

drywasher

Small scale dry washers resemble a highbanker with a screen/grizzly on the upper section and a sluice-like screen setup on the bottom. There are hand-operated units using bellows, and gas-powered blowers. Commercial-scale drywasers are somewhat rare but they are used in gold-rich areas of Australia and parts of the United States.

There are no manufacturers that make commercial-scale dry washers. All large scale units are custom made. Most of them are fed by a loader and distribute the material through a screen system into multiple cells of smaller dry washer sluices. Keene is developing a commercial drywasher but it’s not available at this time.

Material to be run in a drywasher must be completely dry, it must contain less than 3% water otherwise it won’t work. The material must also be disintegrated and not clumped together by clay or caliche. Studies show that under ideal conditions a dry washer will have about 15% less recovery than a wet system (ie. sluice).

Pros Cons
Doesn’t require water Lower recovery than wet systems
Can be moved rapidly Makes a lot of dust
Fast cleanup (compared to wet sluice) Frequent cleanups are required

Feed Systems

We’ve covered screening systems and concentrators. The next component of a wash plant is the feed system. Wash plants can be fed in different ways. Some have a hopper that is fed by an excavator or loader, others are fed by a slurry pump or dredge.

Hoppers

The most common feed system on a wash plant is the hopper. The hopper is a large container that is filled with raw gravel and allows it to be dispersed at an even rate. Many hoppers are gravity-fed, they operate in a similar way to an hourglass. They have an inverted pyramid shape and act as a funnel.

Other hoppers have a belt or track in the bottom that manages the feed rate. I’ve seen some cool designs in the Yukon that use a recycled excavator track in the bottom of the hopper to slowly feed a trommel.

The hopper won’t feed itself and must be refilled regularly by an operator. Most operations either use an excavator or a front end loader to keep the hopper full. Some miners use a conveyor belt system in combination with a hopper to maintain an even flow of material.

Pros Cons
Maintain even flow (when not clogged) Large rocks can get stuck
Simple design, not much to break down Requires operator to refill regularly

Bucket Ladder

The bucket ladder is the most efficient system for feeding wash plant. This was the norm on the monster floating dredges that scoured the gold-bearing placers of western North America from the late 1800s till the 1950s. These monster dredges moved ridiculous amounts of gravel, each dredge could efficiently process up to nine tons of gravel per minute, with an average of 20,000 cubic yards per day!

The bucket ladder consists of a boom and a series of metal digging buckets. It’s sort of like a giant chainsaw. The buckets are specially designed with a digging edge and held together with a giant chain. The boom is raised up and down with a gantry winch system. The buckets continually dump material into the scrubber system (trommel, screen deck or any other system that we discussed above).

The depth of the bucket line is limited to the length of the boom. Typical industrial dredges could dig up to 60 feet deep. The buckets are able to dig up soft bedrock but if hard rock is encountered they cannot. The buckets can’t handle large boulders either. The dredge in the video below isn’t at a placer mine but it shows what a modern bucket ladder dredge can do.

Environmental restrictions have made it a lot more difficult to operate a floating plant with a bucket line but some are still in operation today in Europe, Africa, Russia, China, Asia, South America, Mexico and the Yukon. Modern bucket ladder dredges are common in non-placer applications

Pros Cons
Constant supply of material Can’t dig too deep
Huge capacity Massive overhead cost
Excavation and delivery in one step Not very mobile
Few breakdowns Regulatory hurdles

Gravel Pump

One of the most efficient ways to feed a wash plant is with a gavel or slurry pump. There are several large-scale placer mines in Alaska and other parts of the world that mine by hydraulic means using large water monitors. The material is washed into a pit and pumped up to the wash plant using large industrial slurry pumps.

Gravel pumps don’t work in every scenario but if your location is favorable this is a very efficient way to mine. The slurry pump can be unmanned, saving labour costs and allowing workers to focus on other areas of the mine. These pumps are very expensive initially but the savings in operating costs will pay off over time.

There are a lot of mines operating in wet ground in BC and the Yukon and a slurry pump would be an excellent solution. Instead of fighting the groundwater you can use it to your advantage.

Gravel Pumphydraulic Mine Sierra Leone

Pros Cons
Consistent feed of material High initial cost
High capacity Requires careful mine planning
Savings on labour Doesn’t work in every location
Good solution for wet ground Possible regulatory hurdles

Suction Dredge

Suction dredges are similar to a slurry pump set up. A suction dredge uses a venturi to create a vacuum that sucks up gravel and water at the same time. Floating dredges are commonly used in small to mid-scale mining. Floating dredges are classified by the diameter of the suction hose which varies from 3 to 8 inches.

Modern suction dredges first became popular in the 1950s due to the availability of good, portable, centrifugal water pumps and modern diving equipment. Some jurisdictions such as British Columbia and parts of California have banned suction dredging but it is a very efficient method that is used around the world.

There are some very advanced dredge machines on the market today. Large scale operations are using 8-inch and larger suction lines. Some of the most interesting dredge innovations are being developed for use on the Bearing Sea in Alaska. The robot dredge in the picture below is a really cool new technology that uses a remotely operated robot with a cutting head attached to an 8-inch dredge.

Robot Dredge Gold

Not all dredge systems use a floating platform and can be fitted to just about any wash plant. You can get excavator-mounted units up to 12” in diameter that can be used in a regular mining pit. These systems advertise up to 600 cubic yards per hour of production.

Some systems use slurry pumps instead of a venturi in combination with a cutting head. The advent of undersea mining has pushed the envelope on this technology and we’re going to see a lot of advancements in the coming years.

Pros Cons
Consistent feed of material Doesn’t work in every location
Excavation and feed at the same time Possible regulatory hurdles
Can be unmanned

Wash Plant Carriers

This is the part of the washplant that supports the scrubber, concentrator, and feed system.

Stationary Skids

Many large wash plants are mounted on a steel frame welded to metal skids. This system isn’t very mobile. Skid-mounted plants are meant to stay in one place for a long time. When it’s time to move they are pulled by heavy equipment such as bulldozers or large excavators and dragged into position.

Skids are simple and stable but don’t provide a lot of mobility.

Trailer or Frame with Wheels

Small to mid-sized wash plants can be mounted on a trailer or frame with wheels. This provides an easy way to move it around. The trailer will often have a leveling apparatus to stabilize the plant while in use. Not much else to say, it’s a trailer we all know what that is.

Floater Plant

The floater plant, also known as a “Doodlebug” is a very efficient way to mine. The plant can be mounted on pontoons or a barge. Floater plants have the ability to move very rapidly in a pond of their own making. It takes planning to operate efficiently without boxing yourself in but when properly executed a floater setup can move a lot of material quickly.

Any type of scrubber, concentrator, and feed system can be fitted onto a floater.

The large bucket line dredges technically fall into this category but most floaters today use an excavator to dig and pull the barge. For a floater operation to work effectively the ground can’t be too deep. Floaters mine in one continuous direction mining in front of the plant while the tailings are deposited behind. It’s almost like an assembly line approach to placer mining.

Pros Cons
Rapid movement Don’t work in deep ground
Efficient mining and tailings management Require a pond for the plant to float on
Floater Wash Plant Atlin Yukon
Floater Plant in Atlin, BC

A placer wash plant is the sum of its parts. It’s not a trommel, it’s not a sluice, it’s the whole package. There are just about as many combinations as there are miners. Placer miners are always coming up with new innovations to solve problems and mine more efficiently.

There is no one plant that is the best in every situation. They all have their strengths and their weaknesses. The type and size of your gold, the type of gravels you’re dealing with, ground conditions, regulatory environment, available capital, and other factors all work together to determine what type of wash plant is best for your mining operation.

Paleochannel Hunting Guide

Paleochannel Hunting Guide

Finding an ancient river channel is the holy grail of placer gold exploration. If you’re in a gold-bearing area, old river channels can hold the kind of unlocked treasures that dreams are made of. Prior to the gold rushes of the mid-1800s, you could have walked up to a virgin stream with untouched gold nuggets sitting in the bottom. That is an extremely rare discovery today. Ancient river channels are hard to find but that’s why many channels are still undisturbed waiting for a smart prospector to discover them.

Klondike Wash Plant

There are undiscovered paleochannels hidden to the naked eye all over the goldfields of North America, and other gold placer districts all over the globe. Advances in technology have aided in the discovery of these ancient channels, some of the tried and true methods still hold true today. How can you find something that you can’t see? This article will explain what paleochannels are and how we find them.

Paleochannels have many names. Such as:

  • Tertiary Channels
  • Periglacier Channels
  • Quaternary Channels
  • Ancient Channels
  • Paleo-gulches
  • Ancestral Rivers
  • Paleo-valleys
  • Buried channels
  • Stranded Channels
  • Inverted Paleochannels
  • Abandoned Channels
  • Ancient Rivers of Gold

Some of those terms refer to specific ages or other characteristics of the channels but they all basically refer to the same thing, river beds that have run dry and have been buried by sediment. There are lots of reasons why a river might change its course but the end result is more or less the same.

The definition of a paleochannel is:

a remnant of an inactive river or stream channel that has been filled or buried by younger sediment

Paleochannels can form in many ways. Either slowly over time or abruptly from things like tectonic activity, glacial dams, mudslides, volcanic eruptions, or by human intervention.

When reading about ancient channels there are terms that often come up such as preglacial, periglacial, tertiary, quaternary, and many others. Those are just adding a time period to the formation of these channels, they’re really all the same thing. “Tertiary channels” are often written about in western North America, but that just means they are ancient channels that were formed during the tertiary period. The tertiary period ranged from the time of the extinction of the dinosaurs (the K-T extinction) about 66 million years ago to the beginning of the ice age period about 2.6 million years ago.

The quaternary period is more recent ranging from 2.6 million years ago to today and has experienced several periods of glaciation. The Pleistocene and Holocene are also part of the Quaternary Period.

Preglacial and Periglacial refer to the timing of a channel in relation to a glacial period. Approximately a dozen major glaciations have occurred over the past 1 million years, the largest of which peaked 650,000 years ago and lasted for 50,000 years. The most recent glaciation period, often known simply as the “Ice Age,” reached peak conditions some 18,000 years ago before giving way to the interglacial Holocene epoch 11,700 years ago.

People sometimes get hung up on some of the terminology but whether a channel formed in a specific time period doesn’t make a huge difference to a placer miner. To be honest, when it comes to placer exploration, every ancient channel in a gold-bearing area is worth exploring, regardless of the age. A channel that only formed 100 years ago has the same likelihood of containing placer gold as one that formed 3 million years ago during the tertiary period. What really matters is whether the creek that formed the channel carried gold or not.

Oxbow Lake

A familiar feature that resembles a paleochannel is an oxbow lake. These formations occur when a meander in a river gets cut off. You can observe oxbow lakes in many places, eventually, the lake will run dry and you’ll end up with a buried paleochannel. Oxbows can be gold-bearing even though they are not considered a “paleochannel”. Streams meander and change course frequently, in some places you can watch oxbows forming in near real-time.

Rivers and streams form all kinds of channels, for different reasons but they all have some things in common. A paleochannel is really the same thing as the rivers and streams that you see today, it was just rerouted and buried by sediment. When prospecting a paleochannel the same rules apply, the old river had inside bends, exposed bedrock, boulders, etc.

The character of a Paleochannel

There are several characteristics that make up a paleochannel. They can tell you a lot about its setting and the depositional environment, which in turn can give you a good idea if placer gold will be present or not.

Those characteristics are width, sinuosity, thalweg, slope, and age.

paleochannel thalweg

Channel width is an important metric for characterizing streamflow and depositional environment. The width is measured perpendicular to the centerline from bank to bank. The width can tell you a lot about a channel, especially when combined with other factors.

Sinuosity is the measure of how much a channel meanders. The sinuosity is measured by dividing the channel length by the straight line distance down the valley axis. You can infer the slope, transport capacity, and other factors from the sinuosity alone. More sinuous channels, those that meander a lot, occur on gentle slopes, the straighter the channel, the steeper the slope.

channel sinuosity

Thalweg is a funny word that comes from German meaning “valley way”. Don’t ask me why we use a German word but we do. The thalweg is simply the deepest part of the channel which is colloquially referred to as the “gutter”.

The slope, along with the width and sinuosity is used to calculate the ability of a channel to transport sediment. The slope is the average angle of the valley in which a stream lies. From a placer standpoint, we know that if our sluice box is too steep the gold won’t catch in the matting, if it’s too shallow the sediment won’t clear. A creek is no different.

The famous California goldfield geologist, Waldemar Lindgren studied channel slopes in relation to placer deposits in BC, California, and the Yukon in 1933. Lindgren determined that the optimal slope for placer formation is a 30-foot drop to the mile or 6 meters per kilometer which calculates out to a ratio of 0.06 or 0.34°. The Klondike’s Bonanza Creek averages 50 feet to the mile (0.01). Dominion Creek, in the Klondike, averages .02; there are slope breaks to 0.01 and that is where most of the gold was trapped. Almost all placer-bearing channels in BC range from a slope of 0.02 to 0.10.

Types of Paleochannels

Bench Channels occur on high benches or terraces above a current river. The flat benches represent the ancient valley floor. As river valley systems evolve the river cuts deeper and deeper into the bedrock leaving old channels high and dry. If you retrace the history the old river would have sat at a higher elevation than it does today.

Bench channels typically have a single channel and aren’t braided. The slope, sinuosity, and width tend to be similar to the current stream. These paleochannels typically run parallel to the existing steam but not always.

High benches can be observed in many river systems in western North America and many rich paleochannels have been discovered and mined within them.

Evolution river valley paleochannel

Buried Paleochannels within modern valleys can be adjacent to or underneath an existing alluvial stream within the same valley. The extent of these channels is difficult to determine due to the complexity of their setting. These channels can be very deep and sometimes buried under several different glacial or fluvial events. The sinuosity, width, slope and direction often mirrors that of the existing stream but not always.

These channels are difficult to mine due to the continual flow of water from the existing stream. A bedrock drain or lots of pumping is often required.

A great example of this type of paleochannel is the Wingdam Mine on Lightning Creek in the Cariboo. Omineca Mining and Metals has found a unique solution to mining their deposit, check out the video below.

Paleogulches are another type of ancient channel. They are gulches that dried up and were buried by sediment. Paleogulches have steep sides and a relatively steep gradient. They have low sinuosity and a relatively straight path. The channel often runs on or near bedrock due to the steep slope of the thalweg and high flow rate.

Gold in these deposits is usually coarse and hasn’t traveled far from the source. Paleogulch placers, like other buried-channel deposits, are typically covered by thick deposits of till, glaciofluvial deposits, and glaciolacustrine sediments.

Paleotrunk-valleys are similar to the paleogulches above. They are trunk valleys that were abandoned and filled with sediment. These deposits are often hundreds of meters wide and quite deep. Paleotrunk-valleys typically no longer have a stream running in them and tend to be totally filled with sediment leaving little to no surface expression.

The Bullion hydraulic mine near Likely, BC is an example of this type of paleochannel. The Bullion Pit produced over 120,000 ounces of gold over the lifespan of the mine. The famous Mary Creek deposit is another example of this type.

inverted paleovalley

Inverted Paleochannels form in a totally different way. They sit high above the surroundings but not on a bench, and not in an existing valley, at least not usually. This type of paleochannel forms when a river valley is filled with lava from a volcanic eruption. The resulting lava cools into basalt and forms a protective cap that is much stronger than the surrounding rock. The result is that over time the surrounding rock is eroded but the basalt is much more resistant and protects the sedimentary rock below it, leaving a high ridge where the river used to be.

Inverted channels are more common in the southwestern United States in places like Utah, Idaho, and eastern Washington. I’m not aware of any gold deposits from inverted channels but it is possible.

An important note about paleochannels: not every channel contains gold. There are paleochannels all over the earth, only ones in gold-bearing areas are significant for gold prospecting. After all, the ancient channel won’t contain gold unless the creek that created it carried gold in its sediment load.

Most parts of North America have been exposed to glaciation at some time or another. The more northern parts have seen extreme transformations of the landscape due to glaciers scouring the surface of the earth. This makes finding ancient channels a lot harder.

It’s rare to find an entire river system entombed in sediment in BC, for example. What you usually find are fragments of ancient rivers. Some can be only a few hundred meters long while others can stretch for 10s of kilometers. There are often pieces missing due to glacial or other types of erosion.

binary comment

The job of the prospector when exploring an ancient channel isn’t too different from a crime scene investigator on CSI. You’re dealing with fragments of channels and what you want to do is add up the clues to reconstruct the crime scene. Modern prospectors use a variety of tools to put those clues together.

How to find a paleochannel

Now we know the types of channels and a little bit about them. How do we find a paleochannel that we can mine?

One of the tell-tale signs of a paleochannel is finding compacted river gravels in an exposed bank. If you’re in the right place and you’re lucky enough to come across river gravels in an exposed bank you could have discovered an ancient channel. Old river beds have certain characteristics that differ from other materials that you’d often see in an exposed bank.

An old river bed will have the following features:

  • Rounded river rocks
  • Densely packed
  • Sorted by size

River beds look different than glacial till, for example. Till will generally have different sized rocks randomly jumbled together, not sorted. Till can have rounded rocks but they are usually accompanied by angular rock of different sizes. A river bed should have bigger rocks at the bottom and finer, rounded gravels on top. River beds are packed together similar to the way that a brick wall is put together, everything fits together tightly with sand and gravel filling in the gaps. It’s not always totally obvious but if you see these signs it’s worth exploring further.

Spotty pay is another potential sign of a paleochannel. If there are sections of a creek that pay well and contain really good gold while other sections are barren that can be due to a rich paleochannel. Sometimes rivers don’t carry any gold of their own but redeposit gold from an ancient channel. It’s also possible that gold is washing down from a hardrock deposit, either way it can pay off big time to investigate spotty pay areas. The same is true when there are several creeks close together and they only have placer gold in a certain region on each creek. If the hot spots on several creeks line up there is probably a reason and it could be that the creeks all cut through a hidden paleochannel.

Spotty Gold Paleochannel
The old-time miners often discovered ancient channels by digging shafts by hand. Many channels have been discovered in this way. It’s not very effective by today’s standards but some people still use this technique. The presence of compacted river gravels underneath layers of sediment are a good sign that a paleochannel is present.

The old-timers would often dig numerous shafts looking for a channel and would dig a horizontal shaft known as a drift once a channel is located. That involves a lot of backbreaking physical work with a low chance of success but during the 1800s and early 1900s, there weren’t as many options available as there are today.

Here’s a great 5-minute YouTube video that describes what compacted river gravels look like, as well as some of the geology at play:

The modern prospector can benefit from advances in technology, especially computer mapping and GIS. Modern mapping tools such as Google Terrain maps can help to find the habitat where paleochannels are likely to be present. LiDAR and drone-based high-resolution terrain mapping can give highly detailed terrain maps which aid in locating favorable conditions for paleochannel exploration.

For example, river benches as described above can often be seen on topo maps. It’s unlikely to see a channel outright since they rarely have a clear surface expression, if at all, but you can narrow down the search area by looking at terrain that is favorable for channels to occur.

Once the search area has been narrowed down to a specific area more advanced techniques can be used to map the exact location and depth of a paleochannel.

There are several geophysical techniques that can map underground structures without having to excavate down to the channel level. Geophysics uses a variety of techniques to map the subsurface of the earth. Some work better than others for mapping paleochannels.

Magnetometer surveys have been used on many occasions to attempt to map ancient channels. A magnetometer is an instrument that measures changes in earth’s magnetic field. They are commonly used in hard rock exploration due to their rapid speed and relatively low cost. Magnetic survey results are usually presented in a map that looks like a thermal image except that instead of temperature you’re looking at variation in the magnetic field, measured in nano-tesla (nT). When exploring for a paleochannel the concept relies on trying to pick up the magnetic signature of concentrations of black sand. The survey usually involves recording measurements along lines perpendicular to the channel and looking in the processed data for anomalous magnetic highs where black sand concentrations are present.

Magnetic surveys have been used a lot in the past but have a very low success rate for mapping paleochannels. This is largely due to false positives from surrounding rock and weak concentrations of mineral sands. I haven’t seen any of these surveys that have actually been successful in locating a paleochannel on their own.

Ground penetrating radar (GPR) is another popular technique. GPR uses a system with two components, a radar source and a receiver. The GPR source emits radio energy of a specific frequency and the receiver records reflections of subsurface rock and soil layers. The survey is laid out in a similar way, with lines perpendicular to the channel.

GPR has also been used in many exploration programs with limited success. Some channels have been discovered in this way but GPR has a few drawbacks. The signal is attenuated by groundwater, clay layers, and permafrost. Under perfect conditions, GPR can map a channel but the data is often ambiguous and of poor quality.

Electromagnetic techniques such as resistivity have a much higher success rate but they have similar issues to GPR when it comes to groundwater. Geoelectrical resistivity tomography (GRT) surveys have a much higher success rate than GPR or magnetometer surveys. The way they image the channels is a bit vague but many channels have been found with this technique. GRT has a few drawbacks as well, conductive bedrock, groundwater, and other factors can lead to unpredictable results.

Sample Cross Section
Sample Cross Section

Seismic surveys have the highest success rate for mapping paleochannels. Seismic works in a similar way to GPR but instead of radio waves it uses vibrational energy. There are two types of seismic used today. Refraction and passive seismic. Refraction surveys have been around for a long time and have been used to find many paleochannels with a very high rate of success. A refraction survey uses an energy source such as dynamite or a specialized shotgun to introduce energy into the ground. An array of sensors called geophones are laid out in a survey line to record the reflected waves that bounce back off the subsurface layers. The timing and velocity of seismic returns give information about the density of layers and their depth from the surface.

Seismic energy passes through groundwater, clay, permafrost with ease and if done correctly will accurately map the subsurface layers. The drawback to refraction seismic is the cost. It takes an experienced crew and expensive equipment to perform this survey correctly.

Passive seismic surveys are a new technique that has only started to be used in the last decade. The passive technique does not require an energy source and can be done with a much smaller crew at a fraction of the cost. Passive seismic is the new kid on the block but it has proven to be very effective at mapping hidden paleochannels. Passive surveys also remove the need to cut lines which lowers costs even more. More info on this technique here, bedrock mapping.

Once a channel is identified and the location is known, further testing is required. The above techniques are able to show the location, shape and character of a paleochannel but won’t give you any information about the gold content. For that you need to take actual samples.

Depending on the depth of the channel there are several options. If it’s shallow enough you can test with an excavator but that is rarely the most economical option. In most cases you need to drill.

There are several drilling techniques used in placer exploration and there are pros and cons to each.

Auger drills are popular among placer miners due to the relatively low cost and perceived sample size but they have serious drawbacks. Augers struggle with large rocks and boulders, and can’t usually penetrate bedrock. They also tend to ovalize the hole leading to sample contamination and material loss down the hole.

Sonic drills are the most effective option. A sonic drill uses a high frequency vibration to bore through soil and rock. These drills take undisturbed samples and can drill through gravel, boulders, and bedrock. You can’t beat the sample quality and efficiency of a sonic drill but the costs of this type of drilling can be quite high.

RC Drill in Action
RC Drill in Action

Reverse circulation (RC) drills also work really well. These drills use a downhole hammer that pulverizes the rock and gravel into chips which are pushed to a collection cyclone at the surface using pressurized air. RC drills also work really well for placer exploration. RC drilling has been used to successfully map many hidden paleochannels in BC and the Yukon.

Rotary diamond drills can also be used with specialized drill mud. These are less common than RC or sonic but have been successful in some situations.

Once you have identified the places where paleochannels are likely to occur from topographic maps, conducted geophysical surveys to map the channel and taken drill samples to confirm the channel depth and gold grades you’ll have the information necessary to develop a mining plan. If the gold grades are high enough to profitably mine then you’re ready to start production.

Many of the richest placer mines in the world exist on paleochannel deposits. They are notoriously difficult to locate and prospect but the results can be extraordinary. Advances in modern technology give today’s prospector an advantage that wasn’t available to miners in the past. There are hidden paleochannels in every mining district and even in places that have been mined for over a century. Discoveries are being made in places that nobody thought to look at in years past. Keep your eyes open for indications of an ancient river channel, there just might be a bonanza sitting right under your feet.

Modern Laws for Claimjumping

Modern Laws for Claimjumping

Throughout mining history, there are stories of scoundrels, cheats, bandits, and liars. The gold rush towns had their share of bad actors but above everything else, there is one title that nobody wanted to have, “the claimjumper”.

claimjumper bc

In the world of mining, claimjumpers are the lowest of the low. During the gold rushes of North America miners traveled into areas where laws didn’t exist yet. In the California Gold Rush of 1849, the territory had no government, police or administration of any kind. Despite the lawlessness and disorder of the early gold rushes one thing was held sacred above everything else, the right of the miner to locate a mining claim and to hold it against all comers.

What does claimjumping mean? There are two forms of claimjumping but they both amount to the same thing:

  • Producing minerals from a claim that belongs to someone else
  • Attempting to seize the land on which another party has already made claim

Historically, stealing or mining ore from someone else’s mine was referred to as highgrading. While claim jumping referred to the actual seizure or taking over of someone else’s claim. Today the two terms are intertwined.

Claimjumping is illegal today just as it was in the mid-1800s and even before that. You can’t shoot a claimjumper anymore but the modern laws are quite powerful nonetheless. In British Columbia and throughout Canada you can face huge fines, jail time and being banned from the right to hold claims. As well as having to forfeit any ill-gotten minerals or profit. If, in the process of claimjumping, you break any environmental regulations or mining laws you will be on the hook for those penalties too. On top of that your equipment and even your vehicle can be forfeited if proven to be involved in the crime.

There are honest and dishonest forms of claimjumping in which the law does make a slight distinction. Honest being that you were unaware that you were engaging in claimjumping. The difference only applies in terms of repayment for the ore that was extracted, the fines and other penalties still apply whether you are knowingly claimjumping or not.

It’s difficult to find the information on Canadian claimjumping laws. Part of that comes from the fact that there isn’t an accepted term for the crime. In legal terminology claimjumping has been referred to by many titles including:

  • Mineral Trespass
  • Wrongful Abstraction of Ore by Trespass Workings
  • Wrongful Working of Minerals
  • Highgrading
  • Wrongful Interference with Personal Property
  • Wrongful Conversion
  • Trespass and Conversion
  • Willful Trespass

My favorite is “Wrongful Abstraction of Ore by Trespass Workings”, it has a certain ring to it. There are slight differences to some of those terms but they all point towards the same thing. Trespass and benefiting from something that doesn’t belong to you. Trespass is actually a complicated part of the legal system. There are different kinds of trespass. We are all familiar with what it means to trespass on private property but a mining claim isn’t necessarily private property. Perhaps we should clarify what a mining claim really is.

mining claim dispute

Trespass and Conversion

In Canada, and specifically in BC, mineral rights are held by the crown. The actual “Crown” in Canada is a story in itself but basically means that the mineral rights are owned by the people of British Columbia. When you are the holder of a mineral or placer claim, you lease the rights to those minerals for the duration of your tenure. From the issue date to the “good to date” of your claim the minerals in that plot of land belong to you and nobody else. Surface rights are a totally different story. Check out our post on Free Miners for more info on that.

Trespassing is defined as “the wrongful interference with one’s possessory rights in real property.” When it comes to claimjumping you are definitely interfering with the claimholder’s rights when you are extracting ore that belongs to them. The trespass itself is not listed as a crime under the Canadian criminal code, but it does allow the claimholder to sue the claimjumper for damages.

In Canadian law there are two ways to deal with the proceeds of trespass and conversion. The mild rule, and severe rule.

Under the mild rule, the guilty party has to pay the claim owner for the value of ore that was extracted. The costs of mining the ore, bringing it to market, etc are not included. This rule applies when the trespass (claimjumping) was not intentional.

The severe rule forces the guilty party to pay the realized value of stolen ore including the cost of mining.

Either way you have to pay back the claim owner for whatever gold you mined on his claim, the severe rule means that you have to pay the full value not accounting for the costs that you incurred in the process. The mild rule is quite lenient that way but you have to prove beyond a reasonable doubt that you commited the crime unintentionally.

There are plenty of examples of supreme court rulings where the trespasser had to pay back the claim owner for their ill-gotten gains. Here is an example from 1907 in the Yukon in which one miner produced ore an another miner’s claim and mixed the ore with his own.

Here’s some info on a more recent case in the Yukon. I actually worked with one of the miners in this story in Klondike back in 2010, I won’t say which one though.

Claimjumping supreme court cases are common in Alberta although the claimjumping takes a slightly different form. These cases are regarding mineral rights for oil instead of precious metals but the concepts are the same. In Alberta, mineral rights are divided by different sedimentary layers that contain petroleum. So different companies can own the mineral rights in the same location but at different depths. Due to the complexities of this system, companies drill into other company’s leases all the time.

AlbertaLeases

The consequences of mineral trespass vary, but the Alberta Energy Regulator introduced a penalty of $50,000 per occurrence. In addition to the penalty, compensation is owed for the value of any minerals obtained during trespass. Alberta mineral trespass is treated the same in a legal sense as gold claims in BC just with a much higher frequency of settlements.

Miner’s Meetings

During the gold rushes you couldn’t file a complaint to any governing body. Miners took justice into their own hands and had a form of democracy called Miner’s Meetings. The meetings were notorious for their swift justice but they were considered fair. In order to participate in a miner’s meeting you had to be the holder of an active claim.

A journalist named Baryard Taylor gave this account of the situation in the California Gold Fields in 1849:

In the absence of all law or available protection, the people met and adopted rules for their mutual security rules adapted to their situation, where they neither had guards nor prisons, and where the slightest license given to crime or trespass of any kind must inevitably have led to terrible disorders. Small thefts were punished by banishment from the placers, while for those of large amount or for more serious crimes, there was the single alternative of hanging.

As gold rushes progressed further North the miners took their knowledge and customs with them. During the Fraser River gold rush, the miners brought with them knowledge of mining placer gold with long toms, rocker boxes and hydraulic mining as well as their own customary law that had spontaneously developed in the California Goldfields.
During the Fraser River gold rush each bar had it’s own set of rules which were democratically chosen by the miners.

The Daily Alta California published the laws passed by a miners’ meeting held on May 12th, 1858 on Hill’s Bar, Fraser River, which included:

  • Claim sizes were defined as twenty-five feet along the river bank’s high water line for each person.
  • Miners were restricted to to one claim by preemption and one by purchase.
  • Claims were “not considered workable” between May 20th and August 20th.
  • During the non-workable period the work requirement was removed.
  • During the workable times claims must be “represented”, or worked, within three days or they were otherwise free to be jumped.
  • There was a regulation declaring that any thieves or claimjumpers would be expelled from Hills Bar and lose their claims.
  • And anybody “interfering with or molesting any Indian” would be punished as “the community shall see fit.”

miners meeting gold rush

Just up the river at Yale, the rules were slightly different:

  • There was a rule concerned with equality, limiting miners from holding more than one claim.
  • A one-day work requirement every five-days was established.
  • The office of recorder was created to keep track of claim registration.
  • Proven claimjumpers were to be banished from the placers and have their claims and gold forfeited.

All along the Fraser, mining communities drew on norms established in California to regulate society on the lower Fraser. This community didn’t legitimate itself based on an external authority. Instead, the miners assumed their own legitimacy and authority.

Miner’s meetings progressed into miner’s boards which were legislated under the Goldfields Act in 1859. The miner’s boards stayed in place until 1888.

More remote areas still used the principles of the miner’s meeting since police presence and regulations were often slow to follow the prospectors. Here’s an account of the legal landscape in the notorious Circle City which is situated just over the Alaska border from the Klondike by Arthur Walden in 1896, two years before the brunt of the Klondike Gold Rush:

Here was a town . . . which had no taxes, courthouse, or jail; no post-office, church, schools, hotels or dog pound; no rules, regulations, or written law; no sheriff, dentist, doctor, lawyer, or priest. Here there was no murder, stealing, or dishonesty, and right was right and wrong was wrong as each individual understood it. Here life, property, and honor were safe, justice was swift and sure, and punishments were made to fit the case.

Eventually communities grew, the North West Mounted Police set up outposts and federal and provincial laws began to take over. The days of frontier justice faded into the background but many of the principles that the miner’s meetings established made their way into legislation.

Current Laws

In the United States many individual states have clear laws regarding claimjumping, or as it is now referred to “mineral trespass”. They vary from state to state but almost all have similar rules on the proceeds of mineral trespass.

For example when a willful trespass occurs in Colorado, the trespasser is not entitled to set off the mining costs. In addition Colorado allows punitive damages for “Willful and Wanton” trespass claims. Punitive damages are a fancy word for additional fines to punish the defendant for outrageous conduct. That is uncommon in Canada.

US penal codes clearly list claimjumping as a crime which isn’t quite as easy to find in Canada. For example in Washington state Mineral Trespass (RCW 78.44.330) is considered a class C felony which carries a punishment of up to 5 years in prison and up to $10,000 in fines

In British Columbia, claimjumping falls under our Mineral Tenure Act. There are two sections of the law that deal with claimjuping:

9(2)A person must not hand pan on a valid mineral title unless the person receives permission from the recorded holder of the mineral title.

As well as

28(1)Subject to this Act, the recorded holder of a claim is entitled to those minerals or placer minerals, as the case may be, that are held by the government and that are situated vertically downward from and inside the boundaries of the claim.
(2)The interest of a recorded holder of a claim is a chattel interest.

Punishments are listed under section 63 of the Act, which states:

63 (1) A person commits an offence who does any of the following:

(a)wilfully and without lawful excuse pulls down, defaces, alters or removes a staking or legal post, a legal corner post or other survey monument;
(b)explores for, develops or produces minerals contrary to this Act or the regulations;
(c)knowingly makes a false statement or provides false information under this Act, or in a registration;
(d)offers for sale, or sells, a mineral title for a non-mining usage.

(3) A person who is convicted of an offence is liable to a fine of not more than $25,000 or to imprisonment for not more than 6 months, or to both.

The following activities are in violation of the Mineral Tenure Act and will result in criminal charges:

  • Panning on a mineral claim or placer claim without permission
  • Producing minerals or placer minerals from an active claim by any means, pan, sluice, shovel, dredge, or even your bare hands.
  • Removing rocks or minerals from a claim, either rockhounding or for any other purpose.

In addition to a potential fine of $25,000 or 6 months in prison, anyone who is proven to be claimjumping will lose their FMC and any claims for a period determined by the Gold Commissioner. That means that you can lose your free miner rights for life and no longer be able to own claims.

A person guilty of removing minerals from a claim is guilty of theft under the Criminal Code of Canada. Section 334 of the criminal code states that theft under $5000 carries a prison term not exceeding two years. For theft over $10,000, a prison term not exceeding ten years.

The Criminal Code of Canada has provisions for selling unrefined ore and specific laws regarding fraud of unrefined ore. If you are engaged in claimjumping it will be difficult and illegal to sell your ill-gotten gold. Precious metal assayers and buyers know these laws and will not accept placer gold unless you can prove the source.

394(1) (b) of the Criminal Code, makes it an offence for anyone to sell or purchase any rock, mineral or other substance that contains precious metals “unless he establishes that he is the owner or agent of the owner or is acting under lawful authority”.

The punishment for violation of that part of the Criminal Code states:

A person who contravenes subsection (1), (2) or (3) is guilty of an indictable offence and liable to imprisonment for a term of not more than five years

In addition to the fines and penalties for those caught in the act of claim jumping you can also be on the hook for any illegal mining or environmental practices that you conduct. The mining and environmental laws are extensive but I’ll list a couple common ones here.

There are a lot more environmental inspectors than there are mining inspectors. They are likely the ones to catch you.
The most common fine is under Environmental Management Act Section 6(3) which states:

a person must not introduce or cause or allow to be introduced into the environment, waste produced by a prescribed activity or operation.

The standard fine for a small highbanker or river sluice is $575. You can see a list of some of the most recent fines here.

In his book Poachers, Polluters and Politics: A Fishery Officer’s Career, former fisheries officer Randy Nelson recounts on an incident where he caught some claimjumpers operating an illegal dredge in the Cariboo:

It was two days before Christmas, I had just caught up with a pile of paperwork and I decided to go for an afternoon patrol North of Quesnel. I crossed the Cottonwood River on Highway 97 North and climbed the big hill from the river valley. I glanced down a side road and saw a parked pickup truck with fresh footprints leading away from it down the snow-covered road.

It could have been any number of activities but I decided to check it out. I walked through the deep snow for over a mile, climbing along the upper banks of the Cottonwood River. The tracks finally turned off and headed downhill toward the river where I could hear a small motor running. Surely no one would be dredging for gold in this salmon stream in the winter?

They were so surprised I’m not sure their wet suits remained dry. They said, “Don’t you ever take time off? We never dreamt you’d be working this time of year or walk into this spot” I took it as a compliment and made sure to to pass that information on to the judge.

There wasn’t much the two of them could say. They were caught and one had a previous conviction. I seized everything at the site, including their dredge, gold dry suits, diving gear and tools. I loaded whatever I could carry and walked out with them out to their vehicle. I told them I would give them a ride home because I was seizing their truck too. Merry Christmas!

It would have taken several days to dismantle and pack the dredge out from the river and it was two days before Christmas so I hired a helicopter to sling the gear out from the river. The two miners were convicted in court and received fines of $3,000 each plus forfeiture of $4,000 worth of gear.

That was a bad day for those two claimjumpers. In situations where you are running bigger equipment that requires a Notice of Work permit (NOW) you can get into a whole bunch of fines and penalties. In a recent Mines Act decision a mine in the Cariboo was fined $28,000 for operating without a proper permit.

How can you avoid claimjumping?

Just like any other law in Canada your ignorance of the law does not exempt you from it. That means that if you are gold panning, mining, rockhounding, or producing mineral of any kind it’s up to you to understand the laws and claims in that area.

Before you go out gold panning make sure that you’re not on someone else’s claim. The best place to check is the BC MTO website (mtonline.gov.bc.ca). That is the website run but the Mineral Titles Branch of BC’s Ministry of Energy, Mines & Petroleum Resources. The MTO maps are a bit daunting to a newcomer but all the information is there.

Local mining laws can take a bit to understand at first but you can always email or phone the MTO with any questions.

Mineral Titles Oline

Claims are rarely marked in the field since BC now has an online staking system. If you are out gold prospecting a GPS is just as important as your gold pan these days. Make sure your maps are up to date and you know how to use your GPS.

The best place to prospect is a panning reserve, your own claim, or a claim where you have permission from the owner. If you aren’t certain that you’re operating legally then don’t start digging.

In summary, these are the penalties for claimjumping in BC:

  • Repayment for full value of the ore that was stolen
  • $25,000 fine or 6 months in prison; Mineral Tenure Act
  • 2 to 10 years in prison for theft, plus summary conviction; Criminal Code of Canada
  • Loss of FMC, potentially for life; Mineral Tenure Act
  • Up to 5 years in prison for selling ore without proving the source; Criminal Code of Canada
  • Fines for violation of mining and environmental laws
  • Possible confiscation of mining gear and your vehicle

Modern-day prospectors and miners work hard to explore their claims. It takes time and money to locate a claim, stake it and begin exploration work. There are hurdles to operate a mine legally. Most miners put a lot of effort into setting everything up properly so that they can mine and reap the benefits of their hard work. Claimjumpers try to cut corners and steal resources from the people that have done the hard work. There’s a reason that nobody wants the earn the title of “claimjumper”.

You can’t be banished from the land or hung you like they did during the gold rushes but you will have to repay all the gold you steal and face penalties for your crimes.

What does it mean to be a Free Miner?

What does it mean to be a Free Miner?

In British Columbia it is necessary to hold a Free Miner’s Certificate (or FMC for short) to buy and sell mining claims. Most miners, prospectors and industry professionals hold an FMC but do they know what it stands for? The concept of the Free Miner holds historical roots dating back to medieval Europe where being a free miner meant a certain status and freedom during a time when freedom was reserved for a select few.

Free Miners Certificate

Mining law in BC dates back to before British Columbia even existed. Few British Columbians actually know the history and genesis of this beautiful province. We talk about the fur traders and explorers like Simon Fraser, Sir Alexander Mackenzie, and David Thompson. To this day they are credited with “discovering” BC. Their names are on our streets, our rivers, and countless monuments around the province.

The early explorers definitely laid the groundwork for things to come but it wasn’t until word got out about a peculiar yellow metal that things really got rolling. Once word reached California about gold in the Fraser Canyon the rush was on. Modern-day BC consisted of a disputed territory called New Caledonia during the time of the gold rush.

The mining law in BC was modeled after regulations in other British colonies such as Australia and New Zealand. The underlying principles of our mining laws date back to medieval Europe with a history dating all the way to the Roman Empire.

Beginnings of the Free Miner

medieval miner

Work in mines during the time of the Greek and Roman empires was primarily conducted by slaves and prisoners. The Romans were producing gold and silver coins used as currency and required more precious metals than were being produced by traditional mines. During the reign of Emperor Charlemagne (768-814) the demand for gold and silver increased. The easily exploitable deposits were beginning to run out and there was a need for specialized mining skills and knowledge.

The Romans recognized the prospecting skills that miners possessed and began to allow slaves and peasants the freedom to explore. The Romans created the right to ownership based on discovery where if a man discovered a mineral deposit he could claim ownership. It was required that he pay a royalty or tribute to the emperor. Through this process, the miner ceased to be a serf and became a free man.

The incentive of freedom drove men to the farthest reaches of the Roman empire in search of metals and subsequently their own freedom. The adventurers taking part in the gold rushes of the 1800s in North America were driven by the same force, to find freedom and wealth on their own terms. The right to discovery has always been one of the core tenents of the free miner system.

Medieval Europe

mining in medieval europe

During the middle ages land was owned outright by lords. Lords were subject to the king but they decided what would and wouldn’t happen on their land. The land was worked by peasants who owed a certain amount of workdays to the lord. In exchange, peasants could use small portions of land to produce their own food. Peasants were subject to the rules and taxes of the lord whose land they occupied.

A peasant couldn’t just take off and go looking around the mountains for gold. He would have to cross into different lands that are owned by different lords. Not to mention he was obligated to work for his lord and nobody else. It would be hard to prospect for minerals if you are tied to a very small plot of land.

Across much of central Europe, free miners were allowed to roam freely across land boundaries of land-holding lords and claim and work the deposits that they found. Since miners possessed the necessary skills and knowledge to exploit subsurface mineral deposits they were always welcomed by local authorities.

The free miner who made a discovery would be awarded a double-sized discovery claim along the vein. Later miners would only be allotted a single claim. In medieval Europe, a claim was called a “meer”. The head meer belonged to the miner who discovered the vein and all other meers were measured off of the head one. This practice continued well into the gold rushes of North America. A medieval free miner would typically not be required to pay for the registration of a claim, the royalty was enough.

Free miners in Germany and Austria developed a system of democracy that was independent of the king, government or lords of their time. In each mining district, the miners got together and elected a “Bergmeister”. The Bergmeister acted much like the gold commissioner in more modern times. He would determine the size of a claim that is to be awarded upon discovery, settle disputes about claims and so on. If the miners weren’t happy with the Bergmeister they would replace him with a more competent one. There is a ton of information of the systems and techniques of mining in the middle ages in an old book called “De Re Metallica”, published in 1556. The title is Latin for “On the Nature of Metals”.

The rules, laws, and practices of free mining communities were brought to England before the invasion by the Normans in 1066. There were several distinct free mining districts in medieval England. Districts were built around a specific commodity such as tin, coal, lead, zinc, and gold. A miner could explore anywhere in his claim regardless of land ownership. A claim was permanent, transferable and heritable as long as he kept up the required work obligations and paid the required royalty.

One of the first written laws regarding free miner’s rights was passed by the Bishop of Trent (modern-day Italy) in 1185. Under that law, the state held all mineral rights. Miners were permitted to freely enter the land to explore and mine provided that they shared the wealth with the state.

Miner’s Law

miners meeting

Free miners typically had immunity from the jurisdiction of the surface owner’s courts and had immunity to common-law. Different lords had different laws, different taxes and so on. Since free miners could roam freely, crossing different land boundaries they needed their own set of laws to provide some sense of continuity. Free mining districts had free miners’ courts which were controlled by the mining community. The concept of miner’s law lasted for centuries and even played a role in the gold rushes of Western North America from California to the Yukon.

Across medieval Europe, there were two main types of free miners. In more populated areas such as Southern England, the free miner system was community-based. Free mining communities existed where miners belonged to a self-governing community outside of the feudal hierarchy. In these areas, miners would work a claim in close proximity to other miners for decades and sometimes even passing on their claim to their descendants.

In the mountainous areas such as Northern England, Scotland, Germany, and Austria claims were spread out and miners would act more individually. In these areas, it was important for a free miner to be able to explore vast areas without being bound by individual landowners.

Both systems influenced the development of mining rights during the gold rush periods and many of the concepts still exist today. A free miner today in BC still has the right to roam freely in search of untapped mineral deposits, although there are a few limitations.

A free miner’s claim was not a standard amount of surface areas such as an acre, hectare or anything like that. The area that a miner was given depended on the strike and dip of their vein. A standard claim was 100 feet along the vein and a width of half the length. The strike of the claim was measured from the apex (outcrop) and could slope downward or lie flat with the land.

A steeper dipping vein would provide a smaller surface area for the claim. Free miners measured claims this way since a steeper dipping vein provided more ore per the same amount of area.

Since the amount of ore was the whole point, this system was considered fairer among free mining communities. This concept followed European settlers into the New World. During the homestead period of Western Canada and the United States settlers were given a predetermined amount of land while miners were given more freedom depending on the geology.

Property during medieval Europe was controlled by feudal lords. Many landowners had large swaths of land under their control and needed information about the geology and mineral deposits on their lands. Free miners were able to develop knowledge of geology due to their right to wander without concern for legal boundaries with large districts.

Medieval Lords commonly permitted free miners to operate on their lands in exchange for mining and geological information. Much as we do today with work and assessment reports as part of the upkeep of modern claims.

The California Gold Rush

california gold rush

At the onset of the California Gold Rush in 1848, the territory of California was only recently transferred to the United States from Mexico. Congress had not yet set up any kind of local government and there were no laws in place to govern the practice of mining. The 49ers were literally left to their own devices.

Each camp developed its own set of rules. Across all districts, miners asserted a universal right to free prospecting and mining on previously unclaimed lands. They developed systems for dealing with staking, noticing, acquiring and abandonment of claims. They dealt swiftly with proven claim jumpers. There were no royalties paid to any government but fees were collected to fund the local miner’s collective. They imposed a rule of one claim per man and work requirements. They also had a rule that allowed no more than one-week absence or your claim would be forfeited.

As discoveries slowed down in the California gold fields prospectors moved to other areas such as Australia, Colorado, Oregon, the Fraser River, Cariboo, and the Yukon. The principles developed in the California camp laws carried with them but had to be adjusted since the new districts actually had governments and laws while California didn’t enact actual public laws until two years after the first gold miners arrived.

The Australian Gold Rush

When the gold rush broke out in Australia in 1851 miners were shocked to find that New South Wales already had a government, property law, courts, military and police. That was a big difference from the wild west of the lawless California gold fields. There were some major conflicts as Australia tried to impose land restrictions, fees and various other rules on the miners.

In the end, a compromise was made and Australia’s Gold Fields Act was passed in 1854. That piece of legislation was based on the European principles of free mining and the lessons learned in the California gold fields. The act protected the miner’s right to free entry, the right to discovery, a personal right to the minerals in place, the right to occupy the claim and a right to participate in the making of local mining rules.

The Fraser River Gold Rush

Fraser river gold rush

With the influx of 30,000 prospectors, mostly American, the British population of 100-200 people was completely overwhelmed. Britain’s claim to present-day BC was under threat.

With the madness of the California gold rush fresh in people’s minds, the young government had to act quickly. HBC Governor James Douglas stationed a gunboat on the Fraser River to intercept gold rush miners to collect mining licenses and lay down the law. Great Britain acted quickly to make BC a crown colony on August 2, 1858.

It was the gold rush, not fur trading that really made BC part of the British Empire and subsequently part of Canada. Our mining laws were imported from Great Britain. Much of our current mining law in BC came from the passage of the Gold Fields Act in 1859.

The Gold Fields Act was strongly based on the legislation passed in Australia three years prior with the same name. The three principles of the free miner were paramount: the right to discovery, the right of entry to explore and the right to miner’s law. Under the new act, any person 16 years of age or over could obtain a Free Miner Certificate for the cost of one pound. An FMC gave its holder (the “free miner”) the right to freely enter onto, and stake a claim, on any un-staked area of Crown land – including private property and First Nations’ territories.

Governor Douglas’ law differed from the Australian law in that it allowed more freedom for miner’s boards. The rules for claim size and the ins and outs of staking a claim varied between mining districts. The government was small and the territory was vast.

The BC government didn’t have the means or the manpower to police all details of mining. They set the ground rules, issued a free miner’s license and let the miners boards police themselves. The large geographical areas and differences among deposits necessitated that claim size, rules and laws be different across the province. The local miner’s boards were able to rule by consensus.

Vigilante justice and decisions by majority vote prevailed in the camps. In time the North West Mounted Police (the predecessor to the RCMP) took on a larger role and established itself in most of the gold rush towns. By the time of the Klondike Gold Rush, there was a substantial NWMP presence in the gold mining areas.

Changes in Legislation

In 1891, provincial legislation formally recognized locations in which free miners could not enter onto and prospect for mineral claims. This included towns, private homes and Indian reserve lands. Today, areas that do not carry the automatic right of entry include land occupied by a building, the 75m of land directly surrounding a private residence (if that area is lawns, gardens etc.) and crop lands.

During the gold rush era (1850s to 1910s) most of the areas being prospected and mined took place on unoccupied frontier land. There were very few people around. On top of that, the techniques of placer mining consisted of pans and rocker boxes. In later years when miners employed more capital-intensive techniques like damming and hydraulicking, water licenses and land use started to become an issue.

In 1911 the Mineral Easements Act was passed. This new act established rules for right of way access to mineral and placer claims over private land. These rights of way included the right to construct the infrastructure required for mining and the right to use existing roads in aid of their mining activities

Under this act, only thirty days’ notice (including an advertisement published in the British Columbia Gazette and in a local newspaper for one month) was required for the establishment of a right of way that could last over an area of land for generations and permit the construction of a pipeline, tramway, and movement of heavy machinery.

Today, the ability for free miners to secure a right of way over private land, without the consent of the landowner, is preserved under section 2 of the Mining Right of Way Act – a legislative successor of the Mineral Easements Act of 1911.

Modern Laws on Free Miners in BC

Claim Post Cariboo

Much of the free miner system remained the same until the 1990s. In 1995 the Mineral Tenure Amendment Act was passed, which added some limitations to mineral rights and activities on private lands. The act prohibited free miners from “interfering with any operation, activity or work on private land”. That was the first major restriction on the free entry system since 1891.

In 2002 amendments to the Mineral Tenure Act, removed the prohibition against free miners and recorded holders from interfering with any operation, activity or work on private land. The amendment provided that interfering with privately held land was permissible, so long as it was minimal and the private owner was compensated.

On January 12, 2005, the whole game changed. BC initiated the online staking system that we know today. Prospectors were no longer required to physically drive claim stakes into the ground, staking could now be done with the click of a mouse. This opened the door to a whole new level of speculation. The number of staked claims grew exponentially. Free miner rights remained intact.

In 2008 the Mineral Tenure Act and Mineral Tenure Act Regulation were amended once again to require that any person beginning mining activities on private land had to give notice at least eight days prior to beginning any mining activity. That law stands to this day. A free miner still has the right to occupy private property but must give a minimum of 8 days’ notice prior to occupation. It is important to note that notice does not require consent. A free miner must notify private landowners but does not need their permission to occupy private land for the purposes of mining.

The current law is specified in the Mineral Tenure Act of British Columbia.

The restrictions on land are broken into two categories. Free miners who hold a title and those who don’t.

As specified in section 11 of the act, the current restrictions on private land where a free miner doesn’t hold a claim include:

  • land occupied by a building
  • the curtilage of a dwelling house,
  • orchard land
  • land under cultivation
  • land lawfully occupied for mining purposes
  • protected heritage property, except as authorized by the local government
    land in a park

Free miners without mineral tenure have rights to explore and search for minerals on most land. In BC a free miner can access any private property as long as proper notice is served and none of the above restrictions apply. That means that as long as you serve notice, you can explore freely on pretty much any private property in BC. The main exceptions are farms and land with a house on it.

If a free miner holds a claim overlapping private property there are less restrictions on access:

  • There is a mining prohibition in that area under the Environment and Land Use Act
  • The area is a designated park under the Local Government Act
  • The area is a designated park or ecological reserve under the Protected Areas of British Columbia Act
  • The area is an ecological reserve under the Ecological Reserve Act
  • The area is a protected heritage property.

When a free miner holds an active tenure the rules change slightly. Access to private land is much less restrictive. Not only does a free miner have access to the land, an active tenure give the right to use the land for all operations related to the exploration and development or production of minerals or placer minerals.

Section 14 of the Mineral Tenure Act which states:

Subject to this Act, a recorded holder may use, enter and occupy the surface of a claim or lease for the exploration and development or production of minerals or placer minerals, including the treatment of ore and concentrates, and all operations related to the exploration and development or production of minerals or placer minerals and the business of mining.

The concept of the “Free Miner” has deep historical roots and much of the free entry system and principles of the free miner are still present in BC laws and practices. The three core tenents of the free miner The right to discovery, Freedom to roam and self-government are built into our current laws. The miner’s meetings and self-government are no longer necessary as we now have strong governments with actual mining laws in place.

The free entry system is often misunderstood by people who aren’t familiar with the intent and history of the system. Private landowners are often surprised to learn that they have to allow miners onto their property. As a result, the free entry system is under threat by people outside of the mining community. Ontario, Quebec and the Northwest Territories have abandoned free miner’s rights due to public pressure.

The same principles that created free entry in Roman and medieval Europe are true today. In order to explore for minerals, it is necessary to have access to the land. If we lose the free entry rights then it will become harder and harder to discover and produce the minerals that our society needs.

When you hold a Free Miner’s Certificate you belong to a long history of free miners. It’s not just a piece of paper. The FMC represents freedom in the true sense of the word. A free miner means belonging to a community that built its own rules and paved the way for modern society. We might have modern tools, advanced technology, and modern government but a discovery today is no different than a discovery in medieval Bavaria. All miners strive for independence and to feed their sense of adventure.

What is the true value of gold?

What is the true value of gold?

There’s something about gold. It possesses us, sometimes entire nations to accumulate more and more of it. Humans have had a strong affinity for gold since the times of the ancient Egyptians and the Aztecs. Gold has been used as currency for thousands of years. Wars have been fought for it, entire civilizations slaughtered for their gold.  Pindar, the ancient Greek poet, described gold as “a child of Zeus, neither moth or rust devoureth it, but the mind of man is devoured by this supreme possession.”

goldCoins

It’s hard to describe the feeling of finding your first gold nugget in an old stream bed.  It sits there in your pan shimmering, the way that only gold can.  You immediately recognize it’s power, it is intoxicating.  This is what drives prospectors past and present to take great risks in the search for gold.  There’s more than just the value of gold that attracts us to it.  The word “placer” itself comes from the Spanish word meaning “pleasure”. For some it is an addiction, for others it symbolizes wealth. You’ll be hard pressed to find a member of the human species who wouldn’t be interested in some gold.

Gold has several properties that make it desirable.  Most importantly it does not rust or tarnish.  Gold artwork discovered in the tombs of Egypt looks just as lustrous today as it did 5000 years ago.  Why is that?  Gold belongs to a group of metals called the “Noble Metals”.  They’re called noble because like nobility in old time monarchies they don’t associate with others.  It’s fancy way of saying that the metals don’t readily react.  Conversely iron will readily react with oxygen to form iron oxide (aka rust).  Gold and other noble metals, such as platinum, possess a very strong atomic structure that requires a lot of energy to disrupt.

KingTut

The ability to maintain over time is common of all valuable substances.  A diamond for example produces a characteristic glow when cut and faceted properly but what good would it be if it disintegrated a month later?  Diamonds are extremely hard and have a rock solid crystal structure.  Other valuable gemstones all share similar properties, emeralds, rubies, sapphires and garnets all sit at the high end of the hardness scale.  While gold isn’t hard in a geological sense it maintains it’s shape and luster indefinitely.

Gold is also very malleable.  Meaning that it can be hammered or pressed into various shapes without cracking or losing its consistency.  You could stretch an ounce of gold into a wire 80km long or produce a sheet of gold leaf 80 meters by 80 meters wide.  Gold is also an excellent conductor.  Not quite as good as copper but a better conductor than nickel, brass, iron, tin, and aluminium.  Gold conductive wire is used in many critical electronics applications such as computer motherboards, smart phones and satellites.

CarajasMine
Carajás iron mine, Brazil

What really makes gold valuable though is it’s scarcity at the earth’s surface.  Approximately 165,000 metric tons of gold have been produced in the entirety of human history.  While that may sound like a lot the amount of gold produced by mining is extremely small in comparison to other metals.  For example the Carajás Mine in Brazil produces an average of 300 million metric tons of iron per year and has a deposit estimated at 7.2 billion metric tons.  And that’s just one mine.  All the gold ever produced would fit inside one Olympic sized swimming pool.

It is often stated that you can’t eat gold.  While that’s not entirely true, (see gold covered pizza) an all gold diet wouldn’t provide much nutrition, and you’d probably have some digestive issues.  The yellow metal doesn’t appeal to our basic needs for survival but neither does money or a smartphone.  That doesn’t make any of these things less valuable.

gold-400oz-bar

 

We typically think of value in dollar terms.  When evaluating an investment such as stocks or real estate it’s hard to think of anything else.  Dollars are not constant though, they are subject to manipulation and inflation.  For at least 6000 years gold has been used as currency and unlike modern currency is not subject to inflation.  Modern currencies are what is called “Fiat Currency”.  There is no standard on what a modern currency note can be exchanged for.  Their value relies solely on people’s faith in it.  Or more correctly their faith in the government.  Inflation rates can severely affect the spending power of a dollar.  There are countless examples, the most striking is the inflation of the German Reichsmark which rose from 4.2 marks to USD in 1914 to a peak of around 4.2 trillion marks to the US dollar by November 1923.  At that time a wheelbarrow full of German marks wouldn’t even buy a newspaper.

Historically world currencies were backed by the gold standard which meant that by law any amount of paper money could be exchanged for a specified amount of gold.  In the 1920s each US dollar was backed by 1.5 grams of gold.  The dropping of the gold standard in Germany during WWI allowed for the hyperinflation that followed.  The United States dropped the standard during the great depression to avoid the federal gold supply from being completely depleted.  Canada followed suit in 1933.  There’s much debate on the merits of dropping the gold standard.  What resulted though is the ability for the government to completely control the currency without requiring tangible assets (ie. gold) to back it up.

Gold bars
Gold bars

So if the dollar is backed by nothing and can be manipulated at will how do you gauge the value of gold.  Or anything for that matter.  True value depends on what people are willing to trade for your goods.  Money makes it easy to barter and trade goods since it’s ubiquitous and there is an agreed upon value at any given time.  For example if you want to sell your car on craigslist you’ll have an idea of how many dollars you want for it.  Lets say you have a used Honda Civic.  You could sell that easily for $4000 CAD.  That same Honda Civic could be traded for a 1 carat diamond engagement ring.  50 years from now a used car might sell for $25,000 dollars due to inflation but the exchange rate of car to diamond ring would remain the same.

The old adage that an ounce of gold will buy you a nice suit still rings true today.  In the gold rush era (1848-1900) an ounce of gold would trade for about $20 USD, and would also buy a nice suit.  A typical suit today would cost you about $450 USD.  So it would seem that today’s gold would buy you 3.5 nice suits.  You have to consider that in the 1800s nice clothing was not mass produced.  To compare accurately you’d have to look at a tailored suit.  A mid range tailored suit made in the United States costs between $1650 and $1800 today.   At present gold is trading at about $1250 USD so the suit adage falls just above the quoted dollar value of gold.

Indian River Yukon

What really gives gold it’s value is the cost of exploration and production.  Being very rare it takes a lot of effort to find gold.  Once it’s found it is expensive to produce as well.   For example Barrick’s Cortez mine in Nevada has an average grade of 2.11 grams per ton.  That means that for every ton of ore processed they average 2.11 grams of gold.  Barrick’s published production cost at the Cortez mine is about $900/oz.  It really is remarkable that they can move and process the 15 tons of rock required to obtain an ounce of gold for $900.

The cost of producing an ounce of gold varies for each mine.  In a placer operation it is a constant cat and mouse game to keep costs low enough to make production economical.  When gold commodity prices fall below production costs mines shut down and less and less gold is produced.  The production cost, driven by scarcity is the single most important factor that drives the price of gold.

RC Drill in Action

Gold exploration is also very expensive.  In the times of the North American gold rush placer and hard rock gold was discovered all over the Western part of the continent.  From the 1840s to 1900 new gold districts were popping up every year as discoveries were made.  Trending almost in sequence Northward from California to the Yukon as explorers made their way through the wilderness.  In more modern times most of the easily reachable areas have have been at least partially explored.  Exploration today mostly takes place in more and more remote areas, such as the Canadian Arctic or other places with a small human footprint.

To properly explore a claim in these areas requires a camp. helicopters and all kinds of equipment.  A typical small exploration program in the Northwest Territories can cost well over $1,000,000 per season with slim chances of success.  While advancements in exploration technology such as geophysics and aerial imagery can provide information that wasn’t available to previous explorers there is no silver bullet.

The costs of thousands of exploration ventures that didn’t amount to a mine are factored into the price of gold as well.  For the estimated 100,000 explorers that took part in the Yukon gold rush only a select few managed to recoup their costs.  Some made made great discoveries but many more spent their life savings on an adventure but returned with no gold.

Big Al Jig

Gold’s value is based on it’s unique properties, people’s desire for the very special metal and the work required to find and produce it.  The value has nothing to do with the the dollar value attached to it.  For every ounce of gold produced tons of rock had to be excavated, the deposit had to be discovered and mapped, and the ore milled and smelted to extract the gold.  As you gaze upon your gold ring and admire it’s beauty think about the story that it could tell you.

Placer Exploration in the Yukon

Placer Exploration in the Yukon

In the spring 2016 I was hired to help on a large scale placer exploration program in the Yukon. The property is located in a part of the Yukon where very little placer activity has taken place. We had a small team of three guys and a lot of equipment.

HayesValleyYota

The Yukon, like BC and Alaska, was explored and settled by prospectors in the late 1800s.  The Klondike gold rush of 1896-1899 was the largest and most storied gold rush in history.  It is estimated that over 100,000 gold seekers migrated to the Arctic territory from places like San Fransico and Seattle.  The Yukon’s economy is still driven by mining and the local culture is completely saturated with gold rush era influences.  A great example is Yukon Gold, the flagship beer of the Yukon Brewing Company, has part the the famous poem “The Cremation of Sam Mcgee” on the label.

YukonGold

The Robert Service poem is part of Canadian heritage and is part of the school curriculum across the country.  After several trips prospecting in the Yukon it takes on different meaning than a quirky poem that you have to read out loud in grade three.

There are strange things done in the midnight sun
By the men who moil for gold;
The Arctic trails have their secret tales
That would make your blood run cold;
The Northern Lights have seen queer sights,
But the queerest they ever did see
Was that night on the marge of Lake Lebarge
I cremated Sam McGee.

On a Monday night in early April at 9PM I received a phone call. “Your flight leaves Vancouver in the morning for Whitehorse. We’ll fill you in on the way.” Typical for this kind of job. I had been expecting the call for a few weeks but it still caught me a little off guard.

Approximate location of the camp
Approximate location of the camp

On arrival to Whitehorse I had been advised that one of our crew would meet me there. I had never met this guy before but I knew he was an old placer miner. The Whitehorse airport is small and we were the only flight. There were several people waiting for passengers so I had to guess. I noticed a guy wearing rubber boots and looked like a placer miner to me. I introduced myself and luckily he was the right guy.

Aerial shot of the placer claims
Aerial shot of the placer claims

We spent a couple hours rounding up additional gear before catching the charter to the camp. I was crammed in a Cessna 206 with the pilot and a bunch of gear. We had all the 5 gallon pails we could buy at the Whitehorse Home Hardware, drill bits, my gear, a 45 gallon drum of diesel, and a bunch of other stuff.

Soon after leaving Whitehorse we flew over Lake Lebarge which is the location where Sam Magee was famously cremated.

LakeLabarge
Lake Lebarge

The pilot warned me that the runway was a little rough. We took a couple passes and lined up to land. It was rough all right, made of gravel and ice, we bounced so hard that we almost took off again. My two crew members were waiting to greet me at the plane. They were excited to meet me, especially since I brought a 24 pack of Kokanee. The beer didn’t last the night.

DSC01591 DSC01640

The two guys that I was working with had already been there for several weeks. It’s a rustic camp and there was no water available for showers or anything. I thought my team mates smelled pretty bad when I arrived but after a few days we all smelled the same. A few weeks later temperatures were high enough to rig up a pump system and a shower. This is not the first rustic camp that I’ve been to where we have satellite internet and no showers.  These are interesting times to be an explorer.
TheCamp

The camp consists of three canvas tents, a seacan and an outhouse.  The tents have “hippy killer” stoves that burn wood.  They work well most of the time but you have to chop wood every time you want heat.  Wood floors had been constructed which is certainly a luxury over dirt floors.  Our kitchen is in the same tent as the office.  There’s a propane stove/oven and plenty of food.  We used paper plates so we wouldn’t have to wash them, they worked great for starting the stoves when we were done with them.

InsideTent

The main goal of this program was to carry out a sampling over the property.  The drilling and sampling will allow us to find and evaluate economic placer deposits. Our primary tool was a Nodwell mounted drill with a 12″ auger. Some areas were sampled by excavator where the ground was not suitable to drill. Material was collected with the drill and excavator and processed on site with a small wash plant. In addition to gold values we developed an understanding of bedrock depth, characteristics and the distribution of placer gold.

Our Auger Drill
Our Auger Drill

Most of the gear was brought in on the winter trail. The trail is about 100km from the closest dirt road and requires the ground to be frozen and snow covered. Our two Nodwells, Toyota track truck, quads, fuel and everything was brought in over the trail. With a light load it can be travelled by snowmobile in about 4 hours each way. With the heavy equipment it takes 3-4 days. There are impromptu camps along the way but nothing with heat and very little shelter. The guys were prepared of course.

On the trail
On the trail

Nodwells are pretty cool machines.  They were invented in the 1950s to service the oilfields of Northern Alberta and the Arctic.  These beastly machines have super wide tracks to spread their weight on soft terrain.  They have a unique drive system that uses rubber tires on the track.  Operating one is similar to driving a tank.  You pull levers to brake the track on either side.  We had two of them, a big Nodwell for the drill and a smaller one for a support vehicle.  The Nodwells have a lot of character, check out the yellow plywood interior and gun rack.  The small one is named “Picasso”.  The photos will expand when clicked.

DSC01429DSC01716

DSC01713

DSC01712

We located and mapped several trenches that were used for ground sluicing dating back to the 1898 Yukon gold rush. The old timers diverted the creek to flow through hand cut trenches. The water was then controlled via a series of gates to strip away overburden. Sort of like hydraulicking. There’s not much left of the old workings today but it gives us an idea of where the pay streaks are.
Old Timer's Trenches
Old Timer’s Trenches

Sampling is key to any placer operation.  Sloppy or inadequate sampling spells the death of many mining operations.  After all you wouldn’t get married without going on a date first.  We collected samples with a rugged 12″ auger drill.  Each sample had a set depth interval and a measured volume.  With accurate measurements we can extrapolate the sample data to evaluate the deposit over large areas.  For example if we sample 500mg (1/2 gram) from 10 pails of material,  that equates to just over 3 grams per cubic yard.  We did have some just like that, and better.

Fresh Drill Samples
Fresh Drill Samples

After collection by the drill our samples were run through a mini wash plant.  We were using a cool machine called “The Prospector” by Goldfield Engineering.  The Prospector uses a water driven pelton wheel to create a vibration.  That’s awesome because all it needs is a 2″ pump to run.  The wheel rotates an eccentric weight similar to the way the a cell phone vibrates but on a larger scale.  Using this machine I processed over 15 cubic yards of samples over 7 weeks.

IMG_5775IMG_5776

The Prospector really eats through material.  The shaker screen breaks it up almost as fast as you can feed it. It struggles when there is a lot of clay though.  After each sample interval is run a cleanup is necessary.  With this machine it’s a quick procedure.  The concentrates from each sample are panned out with a gold pan.  The gold is then dried out and weighed to be used in grade estimates.

DSC01613ProspectorCrop

As the summer solstice approaches the days get longer in the Yukon.  In the summer the sun does not set in the Arctic it is after all the land of the midnight sun.  The lack of darkness takes a little getting used to.  In early May we had a couple of Northern lights shows that were pretty good.  At that time there was about 2 hours of darkness where the Northern lights were visible.  A week later it would no longer be dark enough.

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

We encountered few animals on the trip.  This is described as a “hungry” part of the Yukon.  One bear tried to enter our camp.  It was a very large black bear, the electric fence slowed him down but it took a few bear bangers to scare him off.  A huge mangey wolf casually pranced right in front of us one night.  All the animals are big in the Yukon.  Even the mosquitoes.  They are so big that they often get up and fly away after you swat them.  Unless you are willing to really smack yourself in the face, they are not going to die.

Mosquito

For some samples we had to use the excavator.  The auger drill does not work well in areas where the permafrost has melted.  We tried a few spots and the mixture of water and loose gravel would not stay on the auger flights.  The excavator does not have that problem since it scoops up a bucket full of material, water and all.  We used a huge 4″ pump to drain the holes first then sampled the bedrock and regolith with the hoe.  The samples were of course put into pails and we measured the volume before processing.

pump DSC02030

We had a few other machines to help out as well.  A couple of bulldozers, some quads, a side by side and a ’96 Toyota pickup with tracks instead of wheels.  We took the tracks off once the snow was all gone using the hoe to lift the truck.  Why bother with jacks when you have those Tonka toys kicking around.

DSC01440 DSC01443

The winter trail conditions rapidly deteriorated as the weather warmed up.  The ground here is like muskeg with lots of water and mud.  Just about everything got stuck at some point, except for the Nodwells.  We had to cross a few creeks, mud and sometimes straight trough the trees.

DSC01593

DrillTowDozer

The pursuit of gold will make men do strange things.  In our case it involved a ton of work travelling over unforgiving terrain to drill holes down to bedrock.  Our persistence and determination paid off though and we discovered a pay channel that extends over much of the drilled area.  It is going to take some more work to map out the full extent but we already have clear evidence of a great deposit.

DSC02033

 

After 50 straight days it was time to go home.  Our ride out was a DHC-3 Turbo-Otter, an impressive aircraft designed by de Havilland, a Canadaian company, in the 1950s.  The Otter took our whole crew and all our gear without any issues.  The turbine engine gives it the STOL capabilities to takeoff and land in a rugged bush airstrip like the one in this camp.  We stopped along the way to drop off one of our guys and pick up some much needed beer before landing in Whitehorse.

I had a wild night in Whitehorse to close off the trip before heading home to BC.  It was a good time in the bush but it is nice to return to the comforts of modern civilization.

The Search for Klondike Lode Gold

The Search for Klondike Lode Gold

In the summer of 2010 I was hired to work with a team to find hard rock gold in the Klondike.  We explored a group of claims on the Indian River.

IMG_1741My crew stayed at a camp operated by a character called Big Al.  That name might sound familiar because he has been featured on the popular TV show Yukon Gold on the History Channel.  Of course at that time we had no idea he was going to be a celebrity.  During the trip we heard a rumour that Hoffmans working a few claims over were filming for a TV show, it turned out to be the hit series Gold Rush on Discovery.  We were surrounded by gold mining TV stars but didn’t know it yet.

Klondike Tailings Piles
Klondike Tailings Piles

Indian River Yukon

The Klondike is a place that has a very storied history and was the site of the greatest gold rush of them all.  California, Oregon, and British Columbia had their gold rushes and stories but the Klondike was like no other.  Between 1896 and 1899 over 100,000 adventurers made the journey from all over the world to the largely uninhabited Yukon territory in search of gold.  What made this rush different is the long journeys and overall inexperience of the Argonauts.  At the time of discovery El Dorado and Bonanza creek were the richest creeks in the world.  Some claims on El Dorado were getting $27 to the pan once they hit the pay streak.  That is equivalent to about $750 per pan in today’s money.

My team met up in Whitehorse the capitol city of the Yukon Territory in early August 2010.  We then rounded up some remaining gear and drove in a rented truck up to Dawson City.  As you arive in Dawson City you can see the remains of over 100 years of placer gold mining. Before you reach the town you can see large tailings piles lining the sides of the highway.  When looked at from above they look like something that was produced by a giant insect.  The tailings piles were put there by humongous dredges that scoured the Klondike drainages until 1966.  It is estimated that each of the dredges were producing as much as 800 ounces of gold per day!

Aerial View of Kondike Tailings
Aerial View of Klondike Tailings

Dawson City is a cool town.  The residents have maintained the look and feel of Dawson’s heyday during the Klondike gold rush.  The streets are dirt with wood plank sidewalks.  Most of the buildings are original in the downtown area and many commercial buildings have the false front that was the norm during the gold rush era.  There is even a law that all signs have to be hand painted.

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

There are no corporate stores or businesses in Dawson.  Everything is locally owned and operated.  Some of the original establishments from the 1890s are still in operation today.  Diamond Tooth Gerties is one such establishment which offers games of chance and nightly can can dancers 7 days a week.  Anouther is Bombay Peggy’s which operated as a brothel during the gold rush.  It has turned into a classy bed and breakfast now.

OLYMPUS DIGITAL CAMERA
My Crew posing with the Can-Can girls

OLYMPUS DIGITAL CAMERADtHotel

Dawson has several historic bars as well.  One such bar is the Downtown Hotel.  We stopped in there one night after visiting several other bars and took part in a local tradition.  It is called the Sourtoe Cocktail.  Only one of my crew was willing to take the shot with me.  The Sourtoe Cocktail is a shot of Yukon Jack whiskey taken with an amputated human toe in the glass.  They keep the toe in a jar of salt above the bar.  Apparently the tradition started with a bootlegger losing his toe due to frostbite.  I was informed that this was their 6th toe which makes you wonder where they new ones came from.

Bombay Peggy'sThe Toe

The Bonanza Creek Road is the main access to Indian Creek.  Along this historic route there are plenty of relics of past mining adventures.  Most notably the historic Dredge No. 4 which mined Bonanza Creek until 1959.  There are other dredges as well and plenty of old heavy equipment that was abandoned by miners of the past.  There are abandoned bulldozers, excavators, trucks and other random big machines.  There is such a surplus of iron that many bridges use large dozer shovels as retaining walls.

Dredge No. 4
Dredge No. 4

We were tasked with finding the source of the placer gold in the Indian River.  We stayed at Big Al’s camp and were exploring mineral claims that overlapped his placer claims.  His knowledge of gold bearing benches as well as historical research was very important in our search.  Likewise our findings were beneficial to Al in exploring new placer areas.  Most of our time was spent exploring old miner’s trails on quads and by foot.  I’d be lying if I said it wasn’t a great time.

14 17

We came across several old mine shafts and evidence of placer mining was everywhere.  My crew participated in some of Big Al’s cleanups too.  It was exciting to see the amount of gold that he was pulling out.  We participated in all the steps of his cleanup process from cleaning the sluice to the concentrator jig and so on.  At each stage a fair amount of rum was consumed it seemed fitting when surrounded by hundreds of ounces of gold.

100_1565 CleanUP

Yup, that's exactly what it looks like.
Yup, that’s exactly what it looks like.

In our hard rock exploration we employed several techniques utilizing traditional prospecting as well as soil sampling and statistical pebble counts.  The soil sampling was conducted with helicopter support which made it a lot easier.  We were bagging close to a hundred samples per day each which was more than we could carry in the bush.  At the end of the day we’d chop out a helicopter landing area and radio the chopper.  Then we’d pick up the samples that we cached during the day.  Hard work but a lot of fun too.

IMG_1883

We spent a total of six weeks prospecting the area.  We took a lot of samples to be sent in for assay from all over the claims.  Prospecting in the Yukon is similar to BC, there is not a lot of exposed rock around.  Unlike the barren lands of the North West Territory and Nunavut there is plenty of forest and vegetation covering the rock.  We spent a lot of time in the helicopter scoping out rock outcrops.

IMG_1746

There seemed to be a correlation between the garnets that were showing up in the placer operation and high grade gold.  When the placer miners hit the paystreak they got a lot of garnets with it.  We started prospecting up a creek called “Ruby Creek” assuming it was named for the abundance of garnets.  The hunch turned out be be right.  We chased the garnets up to some large outcrops near the top of the mountain.  The samples contained a lot of garnet but not a lot of gold.

100_1595 SoilSampling

From an old mineshaft that we found near a cabin we discovered that the miners hit a layer of pure quartz conglomerate.  And it was loaded with gold.  We then knew what to look for.  The search for the source of the Klondike gold continued for several weeks.  We encountered giant moose, grizzly bears, Northern Lights and some great people.  On several occasions we thought we found the fabled mother lode but the samples returned disappointing assay results.  Some of the more random samples showed the highest grades.  They say gold is where you find it.  We did not find the source of the klondike but we did manage to have a great time and got paid for it.

OLYMPUS DIGITAL CAMERA

Top Ten Gold Rushes of BC – Part 2

Top Ten Gold Rushes of BC – Part 2

In part one of the top ten gold rushes of BC we covered the early gold rushes primarily in the Southern regions.  As time went on gold hungry adventurers pushed further in the wild North of the Canadian West coast.  Their adventurous spirit was rewarded greatly and eventually led them into the Yukon and Alaska.

1865 Big Bend Gold Rush

KootenalMap1897_crop
1897 Map of the Big Bend Area

The Big Bend refers to the shape of the Columbia River as it makes a huge detour at the continental divide.  This region encompasses several different mountain ranges including the Selkirks, the Cariboo Mountains, the Monashees and the Rocky Mountains.  In 1865 gold was discovered on French Creek which is straight North of Revelstoke.  As in other gold rushes a town was quickly erected named French Creek City.  Within the first year the town reached a population of over 4000 people.  Nothing is left today but during the rush French Creek had a general store, saloons with cabaret shows, barber shops and of course brothels.  Other important towns of the rush were La Porte and Downie Creek.  The inhabitants came mostly from the Wild Horse area and other areas in BC.

Steamboats were a major factor during the big bend gold rush.  Many of the prospectors reached the area on steamboats via the Arrow Lakes which make up part of the Columbia River.  The lake network allowed boat passengers to travel from areas as far South as the US border.

Boat
Columbia River Steamboat, the “Rossland”

Other notable creeks in the area are Carnes Creek, Downie Creek, McCullough Creek, and the Goldstream River.  A 14 ounce nugget was reported to be found on French Creek and numerous smaller nuggets were also found.  In 1865 miners were bringing out multiple ounces per day to the man on some claims.  On McCullough Creek pay streaks averaged 1/8 of an ounce per yard for many years.  Just like other places in the late 1800s hydraulic and drift mining driven by mining companies and syndicates quickly replaced hand mining techniques.  The big bend gold rush only lasted two years but mining in the area continues to this day.  Several large projects and proposed mines are located in the big bend.

1869 Omineca Gold Rush

The Omineca is a huge region in Nortn-Central BC.  The southern boundary is marked today by the Yellowhead highway the North boundary is the Liard Mountains.  Gold was first discovered in the Omineca in 1861 but the rush didn’t take place until eight years later.  The original discoveries were made on the Finlay River.  In the early days there were very few people in the area due to a complete lack of trails, roads or maps and unforgiving terrain and weather.  Much of the area is still wild today.

Northern BC circa 1898, red symbols are known gold discoveries
Northern BC circa 1898, red symbols are known gold discoveries

One of the first claims on the Finlay called Toy’s Bar produced 4 ounces to the man each day.  Several expeditions were launched though the area searching for gold.  One such party, the Peace River Prospecting Party, found a great discovery on Vital Creek in 1869.  The creek was named after one of the party members, Vital Laforce who was also instrumental in exploring the Cariboo region.  Vital Creek produced nearly 5000 ounces in the years following the rush.

Manson Creek and the Germansen River held the best gold deposits in the Omineca.  Gold discoveries were also made on Blackjack Creek, Kildare Creek, Mosquito Creek, Slate Creek and Nugget Gulch.  In the early days of the gold rush anything less than an ounce a day was considered unworthy.  Many creeks were paying 100 ounces per week.  If the gold rush happened today that would be well over $100,000 every week.  I’d be finding my way up there any any means possible.  Travelling to the Omineca in the 1800s was a feat in itself.

The discovery of gold in the Cassiar in 1873 spelled the end of the Omineca gold rush.  As with all gold rushes those who held good ground stayed and kept mining while everyone else headed on to the next boom town.  The Omineca is one of the least explored regions in BC today and there are still gold strikes waiting to be found.

1873 Cassiar Gold Rush

Gold was discovered on the Stikine River in 1861 and a minor rush developed.  A few hundred prospectors ascended the river in search of gold.  There was an existing fur trading fort at the mouth of the river called Fort Stikine which later became Wrangell, Alaska.  Not enough gold was found to entice more adventurers to the region but the excitement was enough to prompt Britain into claiming the region as a colony in 1862.

Cassiar region circa 1893
Cassiar region circa 1893

The Cassiar gold rush really took off once the high grade gold deposits in the extreme North of BC were discovered.  This part of the country is extremely rugged with huge mountains, glaciers and a very cold winter.  The discovery was made in the summer of 1872 by Henry Thibert and Angus McCulloch on a creek that drains into Dease Lake.  The creek was named after Thibert who froze to death the following winter.  Thibert Creek was very rich, in the first year miners were getting up to three ounces to the pan.

TurnagainNugget
The 52 oz “Turnagain Nugget” from Alice Shea Creek in the Cassiar

In 1874 an even bigger discovery was made further North on Mcdame Creek.  The largest gold nugget ever found in BC was taken from Mcdame Creek tipping the scale at 73 ounces!  Another giant nugget was found on Alice Shea Creek that weighed 52 ounces.

Several towns sprung up near the gold discoveries such as Laketon, Porter Landing and Centerville.  They are all ghost towns now but in the height of the rush thousands of people were passing through the shops and saloons of the Cassiar.  Like the Omineca much of this region is just as wild today as it was 150 years ago.

The Cassiar’s rich gold reserves have not been forgotten.  There are many large mining projects under way in the region.  Due to the high grade mineral deposits the area is known as BC’s “Golden Triange”.
BCs-Golden-Triangle

1885 Granite Creek Gold Rush

Granite Creek is a tributary to the Tulameen River.  In the gold rush era of the late 1800s the Tulameen was still a remote and wild area.  Like many of the best discoveries the Granite Creek gold was found by chance.  In this case it was actually found by a cowboy named Johnny Chance.  In the summer of 1885 Chance was delivering some horses to New Westminster and took a route through the Tulameen.  True to his lazy nature he took a nap at a spot on Granite Creek on a hot day.  When he woke up he happened to notice the reflection of some gold nuggets in the water.

Granite City in 1888
Granite City in 1888

Within a year of the discovery the once vacant valley at the mouth of Granite Creek had over 2000 people living there.  At the time Granite City was the third largest town in BC.  There were over two hundred buildings, 13 of which were saloons.  The town never had a school or a mayor though.  The bars in Granite ran flat out and never closed down.  It was known as one of the wildest towns in the West.

In the early days gold nuggets weighing 5-10 ounces were commonly found.  Platinum was also prevalent on the creek.  Miners were producing equal weights of platinum and gold.  Interestingly for the first few years the Granite Creek miners had no idea what platinum was and most of them threw it back into the creek.  At today’s prices gold is going for $1077/oz and platinum is at $870/oz.

GrantieCabin4
Granite City in 2015

The Granite Creek rush brought attention to the surrounding area as well.  Other notable creeks in the Tulameen are Slate Creek, Lawless Creek, Lockie Creek and the Tulameen River.  Gold and platinum are still being produced today.  I heard from a Princeton local that the biggest nuggets to come out of the Tulameen this year were over an ounce.  I have some claims on Granite Creek and the Tulameen River myself.  Check this post from earlier this year Tulameen Prospecting Trip.

By the end of the 1890s the population of Granite City began to decline.  The easy gold was all claimed and in the process of being mined.  Those that didn’t already hold good ground headed North to try their luck in the Atlin and Klondike gold rushes that followed.

1898 Atlin Gold Rush

Atlin area map 1898
Atlin area map 1898

The Atlin gold rush was the last one to take place in BC.  It was a direct offshoot of the Klondike gold rush that took the world by storm.  The Klondike was the mother of all gold rushes, over 100,000 adventurers poured into Dawson City, YK from all over the world.  Some of the adventurous prospectors took a different route and ended up in Atlin.

The first big discovery was on Pine Creek.  A town was set up on Pine Creek aptly named Discovery.  At it’s peak there were over 10,000 people living in Discovery which was rivalled only by the infamous Dawson City.  Discovery had all the excitement of Dawson.  There were saloons, brothels, and gambling available at all hours of the day.  Discovery is a ghost town today, it was replaced by the town of Atlin.

Discovery Townsite in 1909
Discovery Townsite in 1909

The gold that was found in the Atlin area was truly legendary.  It is estimated that over 1.5 million ounces of placer gold have been produced from the creeks.  Some giant nuggets were found too.  Several creeks are known to have produced nuggets in excess of 50 ounces!  The best placer gold creeks were Pine Creek, Spruce Creek, Ruby Creek, McKee Creek, Birch Creek, Boulder Creek, Otter (Surprise) Creek, and the McDonnel River.

Atlin is a beautiful town, I had the pleasure of working up there a few years ago.  In the early 1900s it was nicknamed the “Switzerland of the North” due to the picturesque mountain setting.  In many ways Atlin is like Dawson City’s little brother.  The music festival is smaller, the gold rush was smaller, less gold was produced but the Klondike is nowhere near as scenic.

Atlin Today
Atlin Today

Gold mining in Atlin has never stopped.  Every time the gold price spikes the area receives another mini gold rush.  There are a lot of large hard rock mining prospects in the area as well.  The region is not far from the golden triangle and benefits from similar underlying geology.  Due to its remote location the area is very under explored and has outstanding potential for exploration.

The BC gold rush period lasted just 50 years.  Many of the participants experienced more than one rush in their lifetime.  It would have been an amazing time to be a prospector.  Here’s a recap of the top ten BC gold rushes:

  • 1851 Haida Gwaii Gold Rush
  • 1858 Fraser River Gold Rush
  • 1858 Rock Creek Gold Rush
  • 1859 Cariboo Gold Rush
  • 1863 Wild Horse River Gold Rush
  • 1864 Leech River Gold Rush
  • 1865 Big Bend Gold Rush
  • 1873 Cassiar Gold Rush
  • 1885 Granite Creek Gold Rush
  • 1898 Atlin Gold Rush
The history of British Columbia is the history of gold and the men who hunt for it.  It was the Fraser River gold rush that led to BC becoming a colony and later a province.  Our towns, overland trails and roads, and much of the early infrastructure was built to support gold mining activity.  Without our lust for precious metal men would not have risked their lives to explore the rugged and unforgiving wilderness of this beautiful province.